A Contact-Mode Triboelectric Nanogenerator for Energy Harvesting from Marine Pipe Vibrations

被引:41
作者
Li, Rui [1 ]
Zhang, He [1 ]
Wang, Li [1 ]
Liu, Guohua [1 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金;
关键词
mechanical energy harvesting; triboelectric nanogenerator; marine pipelines; optimization design; scaling law;
D O I
10.3390/s21041514
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Structural health monitoring is of great significance to ensure the safety of marine pipes, while powering the required monitoring sensors remains a problem because the ocean environment is not amenable to the traditional ways of providing an external power supply. However, mechanical energy due to the vortex-induced vibration of pipelines may be harvested to power those sensors, which is a convenient, economic and environmentally friendly way. We here exploit a contact-separation mode triboelectric nanogenerator (TENG) to create an efficient energy harvester to transform the mechanical energy of vibrating pipes into electrical energy. The TENG device is composed of a tribo-pair of dielectric material films that is connected to a mass-spring base to guarantee the contact-separation motions of the tribo-pair. Experimental tests are conducted to demonstrate the output performance and long-term durability of the TENG device by attaching it to a sample pipe. A theoretical model for the energy harvesting system is developed for predicting the electrical output performance of the device. It is established that the normalized output power depends only on two compound variables with all typical factors taken into consideration simultaneously. The simple scale law is useful to reveal the underlying mechanism of the device and can guideline the optimization of the device based on multi-parameters analyses. The results here may provide references for designing contact-mode TENG energy harvesting devices based on the vibration of marine pipes and similar structures.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] Multifunctional triboelectric nanogenerator towards impact energy harvesting and safeguards
    Wang, Sheng
    Ding, Li
    Wang, Yu
    Gong, Xinglong
    NANO ENERGY, 2019, 59 : 434 - 442
  • [32] Gas-driven triboelectric nanogenerator for mechanical energy harvesting and displacement monitoring
    Li, Changzheng
    Guo, Hengyi
    Liao, Jiaqiang
    Wang, Yaofeng
    Qin, Yaoyu
    Tian, Zhi Qun
    NANO ENERGY, 2024, 126
  • [33] Multifunctional triboelectric nanogenerator for wind energy harvesting and mist catching
    Zhang, Fei
    Zheng, Lin
    Li, Hao
    Yu, Gao
    Wang, Shengbo
    Xing, Fangjing
    Wang, Zhong Lin
    Chen, Baodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [34] Comparative study on the contact-separation mode triboelectric nanogenerator
    Hasan, Saima
    Kouzani, Abbas Z.
    Adams, Scott
    Long, John
    Mahmud, M. A. Parvez
    JOURNAL OF ELECTROSTATICS, 2022, 116
  • [35] Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting
    Xi, Yinhu
    Hua, Jing
    Shi, Yijun
    NANO ENERGY, 2020, 69
  • [36] A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy
    Da Zhao
    Hengyu Li
    Jianlong Wang
    Qi Gao
    Yang Yu
    Jianming Wen
    Zhong Lin Wang
    Tinghai Cheng
    Nano Research, 2023, 16 : 10931 - 10937
  • [37] VORTEX INTENSIFICATION OF A TRIBOELECTRIC NANOGENERATOR ARRAY FOR WATER ENERGY HARVESTING
    Li, Zhongjie
    Wang, Chenyu
    Gong, Ying
    Zhou, Yuan
    Wang, Biao
    PROCEEDINGS OF ASME 2023 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS2023, 2023,
  • [38] Design and output performance of vibration energy harvesting triboelectric nanogenerator
    Wu Ye-Sheng
    Liu Qi
    Cao Jie
    Li Kai
    Cheng Guang-Gui
    Zhang Zhong-Qiang
    Ding Jian-Ning
    Jiang Shi-Yu
    ACTA PHYSICA SINICA, 2019, 68 (19)
  • [39] Plant-based triboelectric nanogenerator for biomechanical energy harvesting
    Babu, Anjaly
    Rakesh, D.
    Supraja, P.
    Mishra, Siju
    Kumar, K. Uday
    Kumar, R. Rakesh
    Haranath, D.
    Mamidala, Estari
    Nagapuri, Raju
    RESULTS IN SURFACES AND INTERFACES, 2022, 8
  • [40] Triboelectric Nanogenerator for Droplet Energy Harvesting Based on Hydrophobic Composites
    Zheng, Yang
    Li, Jingjing
    Xu, Tiantian
    Cui, Hongzhi
    Li, Xiaoyi
    MATERIALS, 2023, 16 (15)