Hydride Reorientation and Delayed Hydride Cracking of Spent Fuel Rods in Dry Storage

被引:4
|
作者
Kim, Young S. [1 ]
机构
[1] Korea Atom Energy Res Inst, Nucl Mat Res Div, Taejon 305353, South Korea
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2009年 / 40A卷 / 12期
关键词
PRESSURE TUBE MATERIAL; ZIRCONIUM ALLOYS; TERMINAL SOLUBILITY; HYDROGEN; PRECIPITATION; TEMPERATURE; STRESS; DISSOLUTION; OXIDATION; BEHAVIOR;
D O I
10.1007/s11661-009-0044-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this work is to investigate the effect of thermal creep during vacuum drying of spent fuel rods on hydride reorientation and their delayed hydride cracking (DHC) susceptibility. To these ends, we analyzed Tsai's thermal creep results of irradiated Zircaloy-4 cladding segments from two pressurized water reactors and Simpson and Ells' observation where zirconium alloy cladding tube failed during long-term storage at room temperature. On cooling under 190 MPa, the spent fuel rods crept to 3.5 pct strain during vacuum drying showed large radial hydrides, while the ones crept to 0.35 pct strain had very fine radial hydrides. Thus, it is suggested that prior creep deformation promotes hydride reorientation in spent fuel rods on cooling after vacuum drying. Evidence for this suggestion is provided by a model experiment. Considering Kim's DHC model and experimental facts showing precipitation of hydrides even at room temperature at stress raisers, we suggest that spent fuel rods would fail by DHC in dry storage if stress raisers are present inside the cladding on cooling to below 180 degrees C, and then axial splits of the failed spent fuel rods would occur by DHC due to fuel expansion by UO2 oxidation.
引用
收藏
页码:2867 / 2875
页数:9
相关论文
共 50 条
  • [11] Zirconium hydride phase mapping in Zircaloy-2 cladding after delayed hydride cracking
    Colldeweih, Aaron W.
    Makowska, Malgorzata G.
    Tabai, Omaia
    Sanchez, Dario Ferreira
    Bertsch, Johannes
    MATERIALIA, 2023, 27
  • [12] Evaluation of a delayed hydride cracking in Zr-2.5Nb CANDU and RBMK pressure tubes
    Gou, Yuan
    Li, Yanrong
    Liu, Yanzhang
    Chen, Hongtong
    Ying, Shihao
    MATERIALS & DESIGN, 2009, 30 (04) : 1231 - 1235
  • [13] Effect of specimen pre-cracking method on Delayed Hydride Cracking Rate
    Mieza, J. I.
    De Las Heras, E.
    Arias, M. I.
    Domizzi, G.
    JOURNAL OF NUCLEAR MATERIALS, 2012, 420 (1-3) : 273 - 277
  • [14] Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2
    Kubo, T.
    Kobayashi, Y.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 439 (1-3) : 202 - 211
  • [15] Initiation and Arrest of Delayed Hydride Cracking in Zr-2.5Nb Tubes
    Kim, Young S.
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2009, 131 (01):
  • [16] Evaluation of Hydride Reorientation Behavior and Mechanical Properties for High-Burnup Fuel-Cladding Tubes in Interim Dry Storage
    Aomi, Masaki
    Baba, Toshikazu
    Miyashita, Toshiyasu
    Kamimura, Katsuichiro
    Yasuda, Takayoshi
    Shinohara, Yasunari
    Takeda, Toru
    ZIRCONIUM IN THE NUCLEAR INDUSTRY: 15TH INTERNATIONAL SYMPOSIUM, 2009, 1505 : 651 - +
  • [17] FEM STUDY OF DELAYED HYDRIDE CRACKING IN ZIRCONIUM ALLOY FUEL CLADDING
    Uno, Masayoshi
    Ito, Masato
    Muta, Hiroaki
    Kurosaki, Ken
    Yamanaka, Shinsuke
    Ogata, Keizo
    ADVANCES IN ENERGY MATERIALS, 2009, 205 : 59 - +
  • [18] An assessment of delayed hydride cracking in zirconium alloy cladding tubes under stress transients
    Chan, K. S.
    INTERNATIONAL MATERIALS REVIEWS, 2013, 58 (06) : 349 - 373
  • [19] A microstructure-based modeling of delayed hydride cracking in Zr-2.5Nb pressure tube material
    Jha, Anjali
    Sarkar, Subrato
    Singh, I. V.
    Mishra, B. K.
    Singh, Ritu
    ENGINEERING FRACTURE MECHANICS, 2024, 295
  • [20] Investigation of resistance of nuclear fuel cladding to hydride cracking
    Makarevicius, V.
    Grybenas, A.
    Kriukiene, R.
    MECHANIKA, 2010, (05): : 25 - 30