Galilean covariance, Casimir effect and Stefan-Boltzmann law at finite temperature

被引:3
作者
Ulhoa, S. C. [1 ]
Santos, A. F. [2 ]
Khanna, Faqir C. [3 ,4 ]
机构
[1] Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Mato Grosso, Inst Fis, BR-78060900 Cuiaba, MG, Brazil
[3] Univ Victoria, Dept Phys & Astron, 3800 Finnerty Rd, Victoria, BC, Canada
[4] Univ Alberta, Theoret Phys Inst, Phys Dept, Edmonton, AB, Canada
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2017年 / 32卷 / 16期
关键词
Galilean covariance; Casimir effect; Stefan-Boltzmann law; finite temperature; PATH-INTEGRAL QUANTIZATION; MANY-BODY THEORY; FIELDS; INVARIANCE; GUIDE;
D O I
10.1142/S0217751X17500944
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Galilean covariance, formulated in 5-dimensions space, describes the nonrelativistic physics in a way similar to a Lorentz covariant quantum field theory being considered for relativistic physics. Using a nonrelativistic approach the Stefan Boltzmann law and the Casimir effect at finite temperature for a particle with spin zero and 1/2 are calculated. The thermo field dynamics is used to include the finite temperature effects.
引用
收藏
页数:10
相关论文
共 26 条
  • [1] Galilei-covariant path-integral quantization of non-relativistic complex scalar fields
    Abreu, LM
    de Montigny, M
    Khanna, FC
    Santana, AE
    [J]. ANNALS OF PHYSICS, 2003, 308 (01) : 244 - 262
  • [2] Weak-field approximation of effective gravitational theory with local Galilean invariance
    Cuzinatto, R. R.
    Pompeia, P. J.
    de Montigny, M.
    Khanna, F. C.
    [J]. PHYSICS LETTERS B, 2009, 680 (01) : 98 - 103
  • [3] Path-integral quantization of Galilean Fermi fields
    de Montigny, M.
    Khanna, F. C.
    Saradzhev, F. M.
    [J]. ANNALS OF PHYSICS, 2008, 323 (05) : 1191 - 1214
  • [4] REPRESENTATIONS OF THE GALILEI GROUP
    INONU, E
    WIGNER, EP
    [J]. NUOVO CIMENTO, 1952, 9 (08): : 705 - 718
  • [5] Quantum fields in toroidal topology
    Khanna, F. C.
    Malbouisson, A. P. C.
    Malbouisson, J. M. C.
    Santana, A. E.
    [J]. ANNALS OF PHYSICS, 2011, 326 (10) : 2634 - 2657
  • [6] Thermoalgebras and path integral
    Khanna, F. C.
    Malbouisson, A. P. C.
    Malbouisson, J. M. C.
    Santana, A. E.
    [J]. ANNALS OF PHYSICS, 2009, 324 (09) : 1931 - 1952
  • [7] Khanna F. C., 2009, Thermal Quantum Field Theory: Algebraic Aspects and Applications
  • [8] GALILEAN ELECTROMAGNETISM
    LEBELLAC, M
    LEVYLEBL.JM
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1973, B 14 (02): : 217 - 234
  • [9] Lvy-Leblond J-M., 1967, Commun. Math. Phys, V6, P286, DOI [10.1007/BF01646020, DOI 10.1007/BF01646020]
  • [10] A NEW APPROACH TO QUANTUM-STATISTICAL MECHANICS
    MATSUBARA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1955, 14 (04): : 351 - 378