Spatiotemporal data mining: a survey on challenges and open problems

被引:72
作者
Hamdi, Ali [1 ]
Shaban, Khaled [2 ]
Erradi, Abdelkarim [2 ]
Mohamed, Amr [2 ]
Rumi, Shakila Khan [1 ]
Salim, Flora D. [1 ]
机构
[1] RMIT Univ, Sch Comp Technol, Melbourne, Vic, Australia
[2] Qatar Univ, Dept Comp Sci & Engn, Doha, Qatar
关键词
Spatial; Spatiotemporal; Data Mining; Challenges Issues; Research Problems; WIRELESS SENSOR NETWORKS; VISUAL ANALYTICS; NEURAL-NETWORK; BIG DATA; CLUSTER DETECTION; EVENT DETECTION; PATTERNS; CRIME; VISUALIZATION; GRAPH;
D O I
10.1007/s10462-021-09994-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatiotemporal data mining (STDM) discovers useful patterns from the dynamic interplay between space and time. Several available surveys capture STDM advances and report a wealth of important progress in this field. However, STDM challenges and problems are not thoroughly discussed and presented in articles of their own. We attempt to fill this gap by providing a comprehensive literature survey on state-of-the-art advances in STDM. We describe the challenging issues and their causes and open gaps of multiple STDM directions and aspects. Specifically, we investigate the challenging issues in regards to spatiotemporal relationships, interdisciplinarity, discretisation, and data characteristics. Moreover, we discuss the limitations in the literature and open research problems related to spatiotemporal data representations, modelling and visualisation, and comprehensiveness of approaches. We explain issues related to STDM tasks of classification, clustering, hotspot detection, association and pattern mining, outlier detection, visualisation, visual analytics, and computer vision tasks. We also highlight STDM issues related to multiple applications including crime and public safety, traffic and transportation, earth and environment monitoring, epidemiology, social media, and Internet of Things.
引用
收藏
页码:1441 / 1488
页数:48
相关论文
共 342 条
[11]   Big Sensor Data Applications in Urban Environments [J].
Ang, Li-Minn ;
Seng, Kah Phooi .
BIG DATA RESEARCH, 2016, 4 :1-12
[12]  
[Anonymous], 2011, 19 ACM SIGSPATIAL IN, DOI DOI 10.1145/2093973.2093980
[13]  
[Anonymous], 2010, P 19 INT WORLD WID W, DOI DOI 10.1145/1772690.1772777
[14]  
Arino Julien, 2017, Infect Dis Model, V2, P218, DOI 10.1016/j.idm.2017.05.001
[15]   Spatio-Temporal Data Mining: A Survey of Problems and Methods [J].
Atluri, Gowtham ;
Karpatne, Anuj ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2018, 51 (04)
[16]   Mining spatiotemporal co-occurrence patterns in non-relational databases [J].
Aydin, Berkay ;
Akkineni, Vijay ;
Angryk, Rafal .
GEOINFORMATICA, 2016, 20 (04) :801-828
[17]   A Stacked Embedded DRAM Array for LPDDR4/4X using Hybrid Bonding 3D Integration with 34GB/s/1Gb 0.88pJ/b Logic-to-Memory Interface [J].
Bai Fujun ;
Jiang Xiping ;
Wang Song ;
Yu Bing ;
Tan Jie ;
Zuo Fengguo ;
Wang Chunjuan ;
Wang Fan ;
Long Xiaodong ;
Yu Guoqing ;
Fu Ni ;
Li Qiannan ;
Li Hua ;
Wang Kexin ;
Duan Huifu ;
Bai Liang ;
Jia Xuerong ;
Li Jin ;
Li Mei ;
Wang Zhengwen ;
Hu Sheng ;
Zhou Jun ;
Zhan Qiong ;
Sun Peng ;
Yang Daohong ;
Kau, Cheichan ;
Yang, David ;
Ho, Ching-Sung ;
Sun Hongbin ;
Lv Hangbing ;
Liu Ming ;
Kang Yi ;
Ren Qiwei .
2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
[18]   Re-ranking via Metric Fusion for Object Retrieval and Person Re-identification [J].
Bai, Song ;
Tang, Peng ;
Torr, Philip H. S. ;
Latecki, Longin Jan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :740-749
[19]   CNN in MRF: Video Object Segmentation via Inference in A CNN-Based Higher-Order Spatio-Temporal MRF [J].
Bao, Linchao ;
Wu, Baoyuan ;
Liu, Wei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5977-5986
[20]  
Barzel B, 2019, NAT PHYS, P1