Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

被引:47
作者
Kalnins, E. G. [1 ]
Miller, W., Jr. [2 ]
Post, S. [2 ]
机构
[1] Univ Waikato, Dept Math & Stat, Hamilton, New Zealand
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
SUPERINTEGRABLE SYSTEMS; INTEGRALS;
D O I
10.1088/1751-8113/43/3/035202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the fundamentals of coupling constant metamorphosis (CCM) and the Stackel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.
引用
收藏
页数:20
相关论文
共 33 条
[1]   Maximal superintegrability on N-dimensional curved spaces [J].
Ballesteros, A ;
Herranz, FJ ;
Santander, M ;
Sanz-Gil, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :L93-L99
[2]   Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature [J].
Ballesteros, Angel ;
Herranz, Francisco J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) :F51-F59
[3]   Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces [J].
Ballesteros, Angel ;
Herranz, Francisco J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
[4]   STACKEL-EQUIVALENT INTEGRABLE HAMILTONIAN-SYSTEMS [J].
BOYER, CP ;
KALNINS, EG ;
MILLER, W .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) :778-797
[5]   Quantum superintegrable systems with quadratic integrals on a two dimensional manifold [J].
Daskaloyannis, C. ;
Tanoudis, Y. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[6]   Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold [J].
Daskaloyannis, C ;
Ypsilantis, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
[7]   Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems [J].
Daskaloyannis, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (03) :1100-1119
[8]   Superintegrability of the caged anisotropic oscillator [J].
Evans, N. W. ;
Verrier, P. E. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (09)
[9]   Hamiltonians separable in Cartesian coordinates and third-order integrals of motion [J].
Gravel, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :1003-1019
[10]   Superintegrability with third-order integrals in quantum and classical mechanics [J].
Gravel, S ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :5902-5912