MASS PROBLEMS AND MEASURE-THEORETIC REGULARITY

被引:6
|
作者
Simpson, Stephen G. [1 ]
机构
[1] Penn State Univ, Dept Math, State Coll, PA 16802 USA
关键词
measure theory; Borel sets; hyperarithmetical hierarchy; Turing degrees; Muchnik degrees; LR-reducibility; reverse mathematics; EVERYWHERE; MEDVEDEV;
D O I
10.2178/bsl/1255526079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well known fact is that every Lebesgue measurable set is regular, i.e., it includes an F-sigma set of the same measure. We analyze this fact from a metamathematical or foundational standpoint. We study a family of Muchnik degrees corresponding to measure-theoretic regularity at all levels of the effective Borel hierarchy. We prove some new results concerning Nies's notion of LR-reducibility We build some omega-models of RCA(0) which are relevant for the reverse mathematics of measure-theoretic regularity.
引用
收藏
页码:385 / 409
页数:25
相关论文
共 22 条
  • [1] A measure-theoretic proof of Turing incomparability
    Conidis, Chris J.
    ANNALS OF PURE AND APPLIED LOGIC, 2010, 162 (01) : 83 - 88
  • [2] Hierarchies of measure-theoretic ultrafilters
    Benedikt, M
    ANNALS OF PURE AND APPLIED LOGIC, 1999, 97 (1-3) : 203 - 219
  • [3] A Measure-Theoretic Computational Method for Inverse Sensitivity Problems III: Multiple Quantities of Interest
    Butler, T.
    Estep, D.
    Tavener, S.
    Dawson, C.
    Westerink, J. J.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2014, 2 (01): : 174 - 202
  • [4] Mathematical aspects of molecular replacement. IV. Measure-theoretic decompositions of motion spaces
    Chirikjian, Gregory S.
    Sajjadi, Sajdeh
    Shiffman, Bernard
    Zucker, Steven M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : 387 - 402
  • [5] A measure theoretic approach to linear inverse atmospheric dispersion problems
    Brannstrom, Niklas
    Persson, Leif A.
    INVERSE PROBLEMS, 2015, 31 (02)
  • [6] Mass problems and density
    Binns, Stephen
    Shore, Richard A.
    Simpson, Stephen G.
    JOURNAL OF MATHEMATICAL LOGIC, 2016, 16 (02)
  • [7] MASS PROBLEMS ASSOCIATED WITH EFFECTIVELY CLOSED SETS
    Simpson, Stephen G.
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 489 - 517
  • [8] The generality of scientific models: a measure theoretic approach
    Cory Travers Lewis
    Christopher Belanger
    Synthese, 2015, 192 : 269 - 285
  • [9] A measure theoretic perspective on the space of Feynman diagrams
    Shojaei-Fard A.
    Boletín de la Sociedad Matemática Mexicana, 2018, 24 (2) : 507 - 533
  • [10] Measure theoretic analysis of probabilistic path planning
    Ladd, AM
    Kavraki, LE
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2004, 20 (02): : 229 - 242