Inter-organ communication: a gatekeeper for metabolic health

被引:110
作者
Castillo-Armengol, Judit [1 ]
Fajas, Lluis [1 ]
Lopez-Mejia, Isabel C. [1 ]
机构
[1] Univ Lausanne, Ctr Integrat Genom, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
energy homeostasis; inter-organ communication; metabolism; obesity; BROWN ADIPOSE-TISSUE; GLUCAGON-LIKE PEPTIDE-1; NERVOUS-SYSTEM CONTROL; ACTIVATED PROTEIN-KINASE; DIET-INDUCED OBESITY; ENERGY-EXPENDITURE; FOOD-INTAKE; THYROID-HORMONE; INSULIN SENSITIVITY; GLUCOSE-METABOLISM;
D O I
10.15252/embr.201947903
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multidirectional interactions between metabolic organs in the periphery and the central nervous system have evolved concomitantly with multicellular organisms to maintain whole-body energy homeostasis and ensure the organism's adaptation to external cues. These interactions are altered in pathological conditions such as obesity and type 2 diabetes. Bioactive peptides and proteins, such as hormones and cytokines, produced by both peripheral organs and the central nervous system, are key messengers in this inter-organ communication. Despite the early discovery of the first hormones more than 100 years ago, recent studies taking advantage of novel technologies have shed light on the multiple ways used by cells in the body to communicate and maintain energy balance. This review briefly summarizes well-established concepts and focuses on recent advances describing how specific proteins and peptides mediate the crosstalk between gut, brain, and other peripheral metabolic organs in order to maintain energy homeostasis. Additionally, this review outlines how the improved knowledge about these inter-organ networks is helping us to redefine therapeutic strategies in an effort to promote healthy living and fight metabolic disorders and other diseases.
引用
收藏
页数:16
相关论文
共 174 条
[11]   Gut hormone PYY3-36 physiologically inhibits food intake [J].
Batterham, RL ;
Cowley, MA ;
Small, CJ ;
Herzog, H ;
Cohen, MA ;
Dakin, CL ;
Wren, AM ;
Brynes, AE ;
Low, MJ ;
Ghatei, MA ;
Cone, RD ;
Bloom, SR .
NATURE, 2002, 418 (6898) :650-654
[12]  
Bayliss WM, 1902, J PHYSIOL-LONDON, V28, P325
[13]   GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning Through Hypothalamic AMPK [J].
Beiroa, Daniel ;
Imbernon, Monica ;
Gallego, Rosalia ;
Senra, Ana ;
Herranz, Daniel ;
Villarroya, Francesc ;
Serrano, Manuel ;
Ferno, Johan ;
Salvador, Javier ;
Escalada, Javier ;
Dieguez, Carlos ;
Lopez, Miguel ;
Fruehbeck, Gema ;
Nogueiras, Ruben .
DIABETES, 2014, 63 (10) :3346-3358
[14]  
Bernard C., 1863, NOUVELLE FONCTION FO
[15]   Human Brown Adipose Tissue: What We Have Learned So Far [J].
Betz, Matthias J. ;
Enerback, Sven .
DIABETES, 2015, 64 (07) :2352-2360
[16]   The role of thyroid hormone and brown adipose tissue in energy homoeostasis [J].
Bianco, Antonio C. ;
McAninch, Elizabeth A. .
LANCET DIABETES & ENDOCRINOLOGY, 2013, 1 (03) :250-258
[17]   Duodenal Lipid Sensing Activates Vagal Afferents to Regulate Non-Shivering Brown Fat Thermogenesis in Rats [J].
Blouet, Clemence ;
Schwartz, Gary J. .
PLOS ONE, 2012, 7 (12)
[18]   FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms [J].
BonDurant, Lucas ;
Ameka, Magdalene ;
Naber, Meghan ;
Markan, Kathleen ;
Idiga, Sharon ;
Acevedo, Michael ;
Walsh, Susan ;
Ornitz, David ;
Potthoff, Matthew .
CELL METABOLISM, 2017, 25 (04) :935-+
[19]   Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis [J].
BonDurant, Lucas D. ;
Potthoff, Matthew J. .
ANNUAL REVIEW OF NUTRITION, VOL 38, 2018, 38 :173-196
[20]   A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis [J].
Bostroem, Pontus ;
Wu, Jun ;
Jedrychowski, Mark P. ;
Korde, Anisha ;
Ye, Li ;
Lo, James C. ;
Rasbach, Kyle A. ;
Bostroem, Elisabeth Almer ;
Choi, Jang Hyun ;
Long, Jonathan Z. ;
Kajimura, Shingo ;
Zingaretti, Maria Cristina ;
Vind, Birgitte F. ;
Tu, Hua ;
Cinti, Saverio ;
Hojlund, Kurt ;
Gygi, Steven P. ;
Spiegelman, Bruce M. .
NATURE, 2012, 481 (7382) :463-U72