Fully Integrated Design of a Stretchable Solid-State Lithium-Ion Full Battery

被引:119
|
作者
Chen, Xi [1 ]
Huang, Haijian [1 ]
Pan, Long [1 ]
Liu, Tian [1 ]
Niederberger, Markus [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Multifunct Mat, Dept Mat, CH-8093 Zurich, Switzerland
关键词
composite current collectors; hydrogel electrolytes; solid-state; stretchable batteries; GEL POLYMER ELECTROLYTES; AQUEOUS-ELECTROLYTE; CARBON NANOTUBES; STRAIN SENSORS; PVDF-HFP; COPOLYMER; PERFORMANCE; HEXAFLUOROPROPYLENE; CONDUCTIVITY; ELECTRONICS;
D O I
10.1002/adma.201904648
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A solid-state lithium-ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. By depositing Ag microflakes as a conductive layer on a stretchable carbon-polymer composite, a current collector with a low sheet resistance of approximate to 2.7 omega (-1) at 100% strain is obtained. Stretchable electrodes are fabricated by integrating active materials with the elastic current collector. A polyacrylamide-"water-in-salt" electrolyte is developed, offering high ionic conductivity of 10(-3) to 10(-2) S cm(-1) at room temperature and outstanding stretchability up to approximate to 300% of its original length. Finally, all these components are assembled into a solid-state lithium-ion full cell in thin-film configuration. Thanks to the deformable individual components, the full cell functions when stretched, bent, or even twisted. For example, after stretching the battery to 50%, a reversible capacity of 28 mAh g(-1) and an average energy density of 20 Wh kg(-1) can still be obtained after 50 cycles at 120 mA g(-1), confirming the functionality of the battery under extreme mechanical stress.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Comprehensive Parametric Study for Solid-state Lithium-ion Battery Through Finite Element Simulation
    Solomon Ansah
    Namsoo Shin
    Jong-Sook Lee
    Hoon-Hwe Cho
    Electronic Materials Letters, 2021, 17 : 532 - 542
  • [32] A Comprehensive Parametric Study for Solid-state Lithium-ion Battery Through Finite Element Simulation
    Ansah, Solomon
    Shin, Namsoo
    Lee, Jong-Sook
    Cho, Hoon-Hwe
    ELECTRONIC MATERIALS LETTERS, 2021, 17 (06) : 532 - 542
  • [33] Design and implementation of a fully-digital lithium-ion battery charger
    Liu, Yi-Hwa
    Teng, Jen-Hao
    TENCON 2006 - 2006 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2006, : 307 - +
  • [34] Polymerized ionic liquid diblock copolymer as solid-state electrolyte and separator in lithium-ion battery
    Nykaza, Jacob R.
    Savage, Alice M.
    Pan, Qiwei
    Wang, Shijun
    Beyer, Frederick L.
    Tang, Maureen H.
    Li, Christopher Y.
    Elabd, Yossef A.
    POLYMER, 2016, 101 : 311 - 318
  • [35] Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane
    Fu, Guopeng
    Soucek, Mark D.
    Kyu, Thein
    SOLID STATE IONICS, 2018, 320 : 310 - 315
  • [36] Review on composite solid electrolytes for solid-state lithium-ion batteries
    Zhang, Z.
    Wang, X.
    Li, X.
    Zhao, J.
    Liu, G.
    Yu, W.
    Dong, X.
    Wang, J.
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [37] Solid-state lithium-ion battery: The key components enhance the performance and efficiency of anode, cathode, and solid electrolytes
    Shalaby, M. S.
    Alziyadi, Mohammed O.
    Gamal, Hadeer
    Hamdy, Salwa
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 969
  • [38] A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery
    Zhu, Lin
    Zhu, Penghui
    Fang, Qunxiang
    Jing, Maoxiang
    Shen, Xiangqian
    Yang, Lezhi
    ELECTROCHIMICA ACTA, 2018, 292 : 718 - 726
  • [39] Solid-State Transport of Lithium in Lithium-Ion-Battery Positive Electrodes
    Bernardi, Dawn M.
    Chandrasekaran, Rajeswari
    Go, Joo Young
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) : A1430 - A1441
  • [40] Perspective Recycling for All Solid-State Lithium-Ion Batteries
    Azhari, Luqman
    Bong, Sungyool
    Ma, Xiaotu
    Wang, Yan
    MATTER, 2020, 3 (06) : 1845 - 1861