Trading networks and Hodge theory*

被引:1
|
作者
Schenck, Henry [1 ]
Sowers, Richard [2 ,3 ]
Song, Rui [2 ]
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2021年 / 5卷 / 01期
关键词
Finance; systemic risk; network clearing; Eisenberg-Noe; Hodge theory; SYSTEMIC RISK; FINANCIAL NETWORKS; CONTAGION;
D O I
10.1088/2399-6528/abd1c2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of analyzing interconnectedness is one of today's premier challenges in understanding systemic risk. Connections can both stabilize networks and provide pathways for contagion. The central problem in such networks is establishing global behavior from local interactions. Jiang-Lim-Yao-Ye (Jiang et al 2011 Mathematical Programming 127 1 203-244) recently introduced the use of the Hodge decomposition (see Lim 2020 SIAM Review 62 685-715 for a review), a fundamental tool from algebraic geometry, to construct global rankings from local interactions (see Barbarossa et al 2018 (2018 IEEE Data Science Workshop (DSW), IEEE) pp 51-5; Haruna and Fujiki 2016 Frontiers in Neural Circuits 10 77; Jia et al 2019 (Proc. of the XXV ACM SIGKDD International Conf. on Knowledge Discovery & Data Mining, pp 761-71 for other applications). We apply this to a study of financial networks, starting from the Eisenberg-Noe (Eisenberg and Noe 2001 Management Science 47 236-249) setup of liabilities and endowments, and construct a network of defaults. We then use Jiang-Lim-Yao-Ye to construct a global ranking from the defaults, which yields one way of quantifying 'systemic importance'.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Hodge Theory on Metric Spaces
    Bartholdi, Laurent
    Schick, Thomas
    Smale, Nat
    Smale, Steve
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (01) : 1 - 48
  • [2] Hodge Theory on Metric Spaces
    Laurent Bartholdi
    Thomas Schick
    Nat Smale
    Steve Smale
    Foundations of Computational Mathematics, 2012, 12 : 1 - 48
  • [3] Hodge Theory of the Middle Convolution
    Dettweiler, Michael
    Sabbah, Claude
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2013, 49 (04) : 761 - 800
  • [4] Hodge theory of SKT manifolds
    Cavalcanti, Gil R.
    ADVANCES IN MATHEMATICS, 2020, 374
  • [5] On the Hodge Theory of the Additive Middle Convolution
    Dettweiler, Michael
    Reiter, Stefan
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2020, 56 (03) : 503 - 537
  • [6] Positivity of vector bundles and Hodge theory
    Green, Mark
    Griffiths, Phillip
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (12)
  • [7] Lectures on Hodge Theory and Algebraic Cycles
    Lewis, James D.
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2016, 4 (02) : 93 - 188
  • [8] On the Hodge theory of the symmetric powers of a curve
    Del Baño, S
    PUBLICACIONS MATEMATIQUES, 2002, 46 (01) : 17 - 25
  • [9] Translation surfaces: Dynamics and Hodge theory
    Filip, Simion
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2024, 11 (01) : 63 - 151
  • [10] Supersymmetry and Hodge theory on Sasakian and Vaisman manifolds
    Ornea, Liviu
    Verbitsky, Misha
    MANUSCRIPTA MATHEMATICA, 2023, 170 (3-4) : 629 - 658