Two types of waste rubber pyrolytic carbon black (WRPCB) were used to prepare the WRPCB modified bitumen. The microstructure and chemical composition of the WRPCB were characterized via scanning electron microscope and X-ray energy dispersive spectroscopy, respectively. The conventional physical properties were applied to study the effect of the preparation technology on properties of the modified bitumen. The dynamic shear rheometer and bending beam rheometer were used to study the highand low-temperature rheological properties of the WRPCB modified bitumen. The results show that the recommended preparation technology of the WRPCB modified bitumen is as follows: the content of the WRPCB is 10%, the shear time is 1 h, and the preparation temperature is 150 degrees C. The resistance to high-temperature deformation of bitumen can be improved, while the low-temperature cracking resistance of bitumen decreases to some extent with the addition of the WRPCB. The pelletized waste rubber pyrolytic carbon black shows more significant influence on bitumen performance than the normal waste rubber pyrolytic carbon black since the particle size of the pelletized waste rubber pyrolytic carbon black is larger, and the surface of the pelletized waste rubber pyrolytic carbon black is smoother than those of the normal waste rubber pyrolytic carbon black. (C) 2021 Elsevier Ltd. All rights reserved.
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
Feng, Zhen-Gang
Yu, Jian-Ying
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
Yu, Jian-Ying
Zhang, Heng-Long
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
Zhang, Heng-Long
Kuang, Dong-Liang
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
Kuang, Dong-Liang
Xue, Li-Hui
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, Ctr Mat Res & Anal, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
Feng, Zhen-Gang
Yu, Jian-Ying
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
Yu, Jian-Ying
Zhang, Heng-Long
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
Zhang, Heng-Long
Kuang, Dong-Liang
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
Kuang, Dong-Liang
Xue, Li-Hui
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, Ctr Mat Res & Anal, Wuhan 430070, Peoples R ChinaWuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China