ON THE INTEGRABILITY AND UNIFORM CONVERGENCE OF MULTIPLICATIVE FOURIER TRANSFORMS

被引:0
作者
Golubov, Boris I. [1 ]
Volosivets, Sergey S. [2 ]
机构
[1] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[2] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Saratov 410028, Russia
基金
俄罗斯基础研究基金会;
关键词
Multiplicative Fourier transform; integrability; uniform convergence; Nikol'skii type inequality; SERIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analogues of two Hardy-Littlewood theorems are proved for a multiplicative Fourier transform. A Szasz type condition for a multiplicative Fourier transform is given and its nonimprovability is proved. Besides, an analogue of Ul'yanov's theorem on the uniform convergence of a trigonometric series and an analogue of Konyuskov-Stechkin's embedding theorem are obtained by means of a Nikol'skii type inequality of various metrics.
引用
收藏
页码:533 / 546
页数:14
相关论文
共 15 条
  • [1] Agaev G.N., 1981, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups
  • [2] [Anonymous], 1958, MATH SB
  • [3] BESPALOV MS, 1982, THEORY FUNCTIONS A 2, P39
  • [4] FICHTENHOLZ GM, 1970, COURSE DIFFERENTIAL, V2
  • [5] GIANG DV, 1994, ACTA SCI MATH SZEGED, V59, P257
  • [6] Golubov B. I., 1987, Walsh Series and Transforms. Theory and Applications
  • [7] GOLUBOV BI, 2001, IZV MATH+, V65, P425, DOI 10.1070/IM2001v065n03ABEH000333
  • [8] HARDY GH, 1926, MATH ANN, V97, P159
  • [9] Nikolskii S. M., 1975, Grundlehren Math. Wiss., V205
  • [10] Fourier series and mean moduli of continuity
    Szasz, Otto
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1937, 42 (1-3) : 366 - 395