Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images

被引:103
作者
Soenksen, Luis R. [1 ,2 ,3 ,4 ,5 ]
Kassis, Timothy [6 ]
Conover, Susan T. [2 ]
Marti-Fuster, Berta [2 ,5 ]
Birkenfeld, Judith S. [2 ,5 ]
Tucker-Schwartz, Jason [2 ,5 ]
Naseem, Asif [2 ,5 ]
Stavert, Robert R. [7 ,8 ,9 ]
Kim, Caroline C. [10 ,11 ]
Senna, Maryanne M. [9 ,12 ]
Aviles-Izquierdo, Jose [13 ]
Collins, James J. [2 ,3 ,4 ,6 ,14 ,15 ]
Barzilay, Regina [16 ,17 ]
Gray, Martha L. [2 ,4 ,5 ,17 ]
机构
[1] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, 3 Blackfan Cir, Boston, MA 02115 USA
[4] Harvard MIT Program Hlth Sci & Technol, Cambridge, MA 02139 USA
[5] MIT Cambridge, MIT LinQ, Cambridge, MA 02148 USA
[6] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] Cambridge Hlth Alliance, Div Dermatol, 1493 Cambridge St, Cambridge, MA 02139 USA
[8] Beth Israel Deaconess Med Ctr, Dept Dermatol, 330 Brookline Ave, Boston, MA 02215 USA
[9] Harvard Med Sch, Dept Dermatol, 25 Shattuck St, Boston, MA 02115 USA
[10] Newton Wellesley Dermatol Associates, Pigmented Les Program, 65 Walnut St Suite 520, Wellesley Hills, MA 02481 USA
[11] Tufts Med Ctr, Dept Dermatol, 260 Tremt St Biewend Bldg, Boston, MA 02116 USA
[12] Massachusetts Gen Hosp, Dept Dermatol, 55 Fruit St, Boston, MA 02114 USA
[13] Hosp Gen Univ Gregorio Maranon, Dept Dermatol, Calle Dr Esquerdo 46, Madrid 28007, Spain
[14] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[15] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[16] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[17] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02148 USA
关键词
UGLY-DUCKLING SIGN; PRIMARY-CARE PHYSICIANS; CUTANEOUS MELANOMA; DECISION-SUPPORT; CANCER; DERMOSCOPY; DIAGNOSIS; CLASSIFICATION; SYSTEM; US;
D O I
10.1126/scitranslmed.abb3652
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to improved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic value, efficient tools for SPL detection are mostly absent. To bridge this gap, we developed an SPL analysis system for wide-field images using deep convolutional neural networks (DCNNs) and applied it to a 38,283 dermatological dataset collected from 133 patients and publicly available images. These images were obtained from a variety of consumer-grade cameras (15,244 nondermoscopy) and classified by three board-certified dermatologists. Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging. We also present a new method to extract intrapatient lesion saliency (ugly duckling criteria) on the basis of DCNN features from detected lesions. This saliency ranking was validated against three board-certified dermatologists using a set of 135 individual wide-field images from 68 dermatological patients not included in the DCNN training set, exhibiting 82.96% (67.88 to 88.26%) agreement with at least one of the top three lesions in the dermatological consensus ranking. This method could allow for rapid and accurate assessments of pigmented lesion suspiciousness within a primary care visit and could enable improved patient triaging, utilization of resources, and earlier treatment of melanoma.
引用
收藏
页数:12
相关论文
共 62 条
[31]   The role of the ugly duckling sign in patient education [J].
Ilyas, Muneeb ;
Costello, Collin M. ;
Zhang, Nan ;
Sharma, Amit .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2017, 77 (06) :1088-1095
[32]   A model of saliency-based visual attention for rapid scene analysis [J].
Itti, L ;
Koch, C ;
Niebur, E .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) :1254-1259
[33]   An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm [J].
Iyatomi, Hitoshi ;
Oka, Hiroshi ;
Celebi, M. Emre ;
Hashimoto, Masahiro ;
Hagiwara, Masafumi ;
Tanaka, Masaru ;
Ogawa, Koichi .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2008, 32 (07) :566-579
[34]   The US dermatology workforce: A specialty remains in shortage [J].
Kimball, Alexa Boer ;
Resneck, Jack S., Jr. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2008, 59 (05) :741-745
[35]   Health Care Resource Utilization and Costs in First-Line Treatments for Patients with Metastatic Melanoma in the United States [J].
Klink, Andrew J. ;
Chmielowski, Bartosz ;
Feinberg, Bruce ;
Ahsan, Sama ;
Nero, Damion ;
Liu, Frank Xiaoqing .
JOURNAL OF MANAGED CARE & SPECIALTY PHARMACY, 2019, 25 (08) :869-877
[36]   A deep learning system for differential diagnosis of skin diseases [J].
Liu, Yuan ;
Jain, Ayush ;
Eng, Clara ;
Way, David H. ;
Lee, Kang ;
Bui, Peggy ;
Kanada, Kimberly ;
de Oliveira Marinho, Guilherme ;
Gallegos, Jessica ;
Gabriele, Sara ;
Gupta, Vishakha ;
Singh, Nalini ;
Natarajan, Vivek ;
Hofmann-Wellenhof, Rainer ;
Corrado, Greg S. ;
Peng, Lily H. ;
Webster, Dale R. ;
Ai, Dennis ;
Huang, Susan J. ;
Liu, Yun ;
Dunn, R. Carter ;
Coz, David .
NATURE MEDICINE, 2020, 26 (06) :900-+
[37]   Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms [J].
Masood, Ammara ;
Al-Jumaily, Adel Ali .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013
[38]   Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial [J].
Menzies, S. W. ;
Emery, J. ;
Staples, M. ;
Davies, S. ;
McAvoy, B. ;
Fletcher, J. ;
Shahid, K. R. ;
Reid, G. ;
Avramidis, M. ;
Ward, A. M. ;
Burton, R. C. ;
Elwood, J. M. .
BRITISH JOURNAL OF DERMATOLOGY, 2009, 161 (06) :1270-1277
[39]   The state of melanoma: challenges and opportunities [J].
Merlino, Glenn ;
Herlyn, Meenhard ;
Fisher, David E. ;
Bastian, Boris C. ;
Flaherty, Keith T. ;
Davies, Michael A. ;
Wargo, Jennifer A. ;
Curiel-Lewandrowski, Clara ;
Weber, Michael J. ;
Leachman, Sancy A. ;
Soengas, Maria S. ;
McMahon, Martin ;
Harbour, J. William ;
Swetter, Susan M. ;
Aplin, Andrew E. ;
Atkins, Michael B. ;
Bosenberg, Marcus W. ;
Dummer, Reinhard ;
Gershenwald, Jeffrey E. ;
Halpern, Allan C. ;
Herlyn, Dorothee ;
Karakousis, Giorgos C. ;
Kirkwood, John M. ;
Krauthammer, Michael ;
Lo, Roger S. ;
Long, Georgina V. ;
McArthur, Grant ;
Ribas, Antoni ;
Schuchter, Lynn ;
Sosman, Jeffrey A. ;
Smalley, Keiran S. ;
Steeg, Patricia ;
Thomas, Nancy E. ;
Tsao, Hensin ;
Tueting, Thomas ;
Weeraratna, Ashani ;
Xu, George ;
Lomax, Randy ;
Martin, Alison ;
Silverstein, Steve ;
Turnham, Tim ;
Ronai, Ze'ev A. .
PIGMENT CELL & MELANOMA RESEARCH, 2016, 29 (04) :404-416
[40]   Melanoma outcomes for Medicare patients - Association of stage and survival with detection by a dermatologist vs a nondermatologist [J].
Pennie, Michelle L. ;
Soon, Seaver L. ;
Risser, Jessica B. ;
Veledar, Emir ;
Culler, Steven D. ;
Chen, Suephy C. .
ARCHIVES OF DERMATOLOGY, 2007, 143 (04) :488-494