When close enough is close enough

被引:7
作者
Scheinerman, ER [1 ]
机构
[1] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA
关键词
D O I
10.2307/2589344
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:489 / 499
页数:11
相关论文
共 14 条
[1]  
[Anonymous], 1986, ALGORITHMIC THEORY N
[2]  
Buchberger B., 1983, Computer Algebra: Symbolic and Algebraic Computation, VSecond
[3]  
Burnikel C., 1999, Proceedings of the Fifteenth Annual Symposium on Computational Geometry, P341, DOI 10.1145/304893.304988
[4]  
Burnikel C, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P702
[5]  
COHEN H, 1996, GRADUATE TEXTS MATH
[6]  
FALLAT S, 1996, CRUX MATH, V22, P341
[7]  
Horn R. A., 1986, Matrix analysis
[8]   HOW TO TANGLE WITH A NESTED RADICAL [J].
LANDAU, S .
MATHEMATICAL INTELLIGENCER, 1994, 16 (02) :49-55
[9]   SIMPLIFICATION OF NESTED RADICALS [J].
LANDAU, S .
SIAM JOURNAL ON COMPUTING, 1992, 21 (01) :85-110
[10]   A NOTE ON ZIPPEL DENESTING [J].
LANDAU, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1992, 13 (01) :41-45