Polynomial identities of RA and RA2 loop algebras

被引:1
作者
Hentzel, I. R.
Juriaans, S. O.
Peresi, L. A.
机构
[1] Univ Sao Paulo, Dept Math, BR-05311970 Sao Paulo, Brazil
[2] Iowa State Univ, Dept Math, Ames, IA USA
基金
巴西圣保罗研究基金会;
关键词
Cayley-Dickson algebras; loop algebras; Moufang loops; polynomial identities; ring alternative loops;
D O I
10.1080/00927870601074822
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be an algebraically closed field of characteristic zero and L an RA loop. We prove that the loop algebra FL is in the variety generated by the split Cayley-Dickson algebra Z(F) over F. For RA2 loops of type M(Dib(A),(-1), g(0)), we prove that the loop algebra is in the variety generated by the algebra A(3) which is a noncommutative simple component of the loop algebra of a certain RA2 loop of order 16. The same does not hold for the RA2 loops of type M(G,(-1), g(0)), where G is a non-Abelian group of exponent 4 having exactly 2 squares.
引用
收藏
页码:589 / 595
页数:7
相关论文
共 16 条
[1]  
Beidar K. T., 1996, PURE APPL MATH, V196
[2]   Identities for the associator in alternative algebras [J].
Bremner, M ;
Hentzel, I .
JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (03) :255-273
[3]   LOOPS WHOSE LOOP RINGS ARE ALTERNATIVE [J].
CHEIN, O ;
GOODAIRE, EG .
COMMUNICATIONS IN ALGEBRA, 1986, 14 (02) :293-310
[4]   LOOPS WHOSE LOOP RINGS IN CHARACTERISTIC-2 ARE ALTERNATIVE [J].
CHEIN, O ;
GOODAIRE, EG .
COMMUNICATIONS IN ALGEBRA, 1990, 18 (03) :659-688
[5]  
de Barros Luiz G. X., 1997, RESULTATE MATH, V31, P266
[6]  
Goodaire E. G., 1996, MATH STUDIES, V184
[7]   Cayley-Dickson algebras and RA loops [J].
Goodaire, EG ;
Zhou, YX .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (01) :505-522
[8]   Identities of Cayley-Dickson algebras [J].
Hentzel, IR ;
Peresi, LA .
JOURNAL OF ALGEBRA, 1997, 188 (01) :292-309
[9]  
Il'tyakov A. V., 1985, ALGEBR LOG+, V24, P210
[10]  
Isaacs I.M., 1976, CHARACTER THEORY FIN