On Formality of Some Homogeneous Spaces

被引:0
|
作者
Tralle, Aleksy [1 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54, PL-10710 Olsztyn, Poland
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 08期
关键词
formality; 3-Sasakian manifold; homogeneous space;
D O I
10.3390/sym11081011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let G/H be a homogeneous space of a compact simple classical Lie group G. Assume that the maximal torus TH of H is conjugate to a torus T beta whose Lie algebra t beta is the kernel of the maximal root beta of the root system of the complexified Lie algebra gc. We prove that such homogeneous space is formal. As an application, we give a short direct proof of the formality property of compact homogeneous 3-Sasakian spaces of classical type. This is a complement to the work of Fernandez, Munoz, and Sanchez which contains a full analysis of the formality property of SO(3)-bundles over the Wolf spaces and the proof of the formality property of homogeneous 3-Sasakian manifolds as a corollary.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Homogeneous spaces of Hilbert type
    Borovoi, Mikhail
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) : 397 - 405
  • [32] Homogeneous spaces with polar isotropy
    Andreas Kollross
    Fabio Podestà
    manuscripta mathematica, 2003, 110 : 487 - 503
  • [33] On homogeneous locally conical spaces
    Ancel, Fredric D.
    Bellamy, David P.
    FUNDAMENTA MATHEMATICAE, 2018, 241 (01) : 1 - 15
  • [34] Stable ergodicity in homogeneous spaces
    Brezin J.
    Shub M.
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1997, 28 (2) : 197 - 210
  • [35] PARABOLIC COMPACTIFICATION OF HOMOGENEOUS SPACES
    Cap, Andreas
    Rod Gover, A.
    Hammerl, Matthias
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (04) : 1371 - 1408
  • [36] On group operations on homogeneous spaces
    Zelenyuk, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (04) : 1219 - 1222
  • [37] A structure theorem for homogeneous spaces
    Mostow, GD
    GEOMETRIAE DEDICATA, 2005, 114 (01) : 87 - 102
  • [38] Harmonic functions on homogeneous spaces
    Chu, CH
    Leung, CW
    MONATSHEFTE FUR MATHEMATIK, 1999, 128 (03): : 227 - 235
  • [39] Gottlieb groups of homogeneous spaces
    Lee, KY
    Mimura, M
    Woo, MH
    TOPOLOGY AND ITS APPLICATIONS, 2004, 145 (1-3) : 147 - 155
  • [40] Neighborhoods of subvarieties in homogeneous spaces
    Kollar, Janos
    HODGE THEORY AND CLASSICAL ALGEBRAIC GEOMETRY, 2015, 647 : 91 - 107