Large measure of hyperbolic dynamics when unfolding heteroclinic cycles

被引:13
作者
Diaz, LJ [1 ]
Rocha, J [1 ]
机构
[1] FAC CIENCIAS,CTR MATEMAT,P-4000 OPORTO,PORTUGAL
关键词
D O I
10.1088/0951-7715/10/4/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the unfolding of heterodimensional cycles (i.e. cycles containing periodic points with different indices). Given any epsilon > 0 we construct an open set of arcs that unfold generically a heterodimensional cycle so that the relative measure at the bifurcation value of the set of parameter corresponding to Omega-stable diffeomorphisms is bigger than 1 - epsilon. On the other hand, the bifurcation value is not a point of full density of hyperbolic dynamics.
引用
收藏
页码:857 / 884
页数:28
相关论文
共 20 条
[1]  
[Anonymous], 1970, S PURE MATH AM MATH
[2]   Persistent nonhyperbolic transitive diffeomorphisms [J].
Bonatti, C ;
Diaz, LJ .
ANNALS OF MATHEMATICS, 1996, 143 (02) :357-396
[3]   PERSISTENCE OF CYCLES AND NONHYPERBOLIC DYNAMICS AT HETEROCLINIC BIFURCATIONS [J].
DIAZ, LJ .
NONLINEARITY, 1995, 8 (05) :693-713
[4]   NONCONNECTED HETERODIMENSIONAL CYCLES - BIFURCATION AND STABILITY [J].
DIAZ, LJ ;
ROCHA, J .
NONLINEARITY, 1992, 5 (06) :1315-1341
[5]  
DIAZ LJ, 1995, THEOR DYNAM SYST, V15, P21
[6]  
MARTIN JC, 1992, THESIS IMPA
[7]   ABUNDANCE OF STRANGE ATTRACTORS [J].
MORA, L ;
VIANA, M .
ACTA MATHEMATICA, 1993, 171 (01) :1-71
[8]  
NEWHOUSE S, 1970, P S PURE MATH, V14
[9]  
NEWHOUSE S, 1978, ASTERISQUE, V31, P44
[10]  
NEWHOUSE S, 1973, HYPERBOLIC NONWANDER