Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS)

被引:84
作者
Budisulistiorini, Sri Hapsari [1 ,2 ,3 ]
Nenes, Athanasios [4 ,5 ,6 ,7 ]
Carlton, Annmarie G. [8 ]
Surratt, Jason D. [2 ]
McNeill, V. Faye [9 ]
Pye, Havala O. T. [1 ]
机构
[1] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA
[2] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA
[3] Nanyang Technol Univ, Earth Observ Singapore, Singapore 639798, Singapore
[4] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30322 USA
[5] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30322 USA
[6] Fdn Res & Technol Hellas, Inst Chem Engn Sci, GR-26504 Patras, Greece
[7] Natl Observ Athens, Inst Environm Res & Sustainable Dev, GR-15236 Palea Penteli, Greece
[8] Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA
[9] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
REACTIVE UPTAKE; HETEROGENEOUS REACTIONS; UNITED-STATES; MODEL; WATER; ACIDITY; PHOTOOXIDATION; REPRESENTATION; VOLATILITY; SEPARATION;
D O I
10.1021/acs.est.6b05750
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the controlling factors governing IEPOX SOA formation. We present a mechanistic modeling investigation predicting IEPOX SOA based on Community Multiscale Air Quality (CMAQ) model algorithms and a recently introduced photochemical box model, simpleGAMMA. We aim to (1) simulate IEPOX SOA tracers from the SOAS Look Rock ground site, (2) compare the two model formulations, (3) determine the limiting factors in IEPOX SOA formation, and (4) test the impact of a hypothetical sulfate reduction scenario on IEPOX SOA. The estimated IEPOX SOA mass variability is in similar agreement (r(2) similar to 0.6) with measurements. Correlations of the estimated and measured IEPOX SOA tracers with observed aerosol surface area (r(2) similar to 0.5-0.7), rate of particle-phase reaction (r(2) similar to 0.4-0.7), and sulfate (r(2) similar to 0.4-0.5) suggest an important role of sulfate in tracer formation via both physical and chemical mechanisms. A hypothetical 25% reduction of sulfate results in similar to 70% reduction of IEPOX SOA formation, reaffirming the importance of aqueous phase chemistry in IEPOX SOA production.
引用
收藏
页码:5026 / 5034
页数:9
相关论文
共 47 条
[1]   Effects of emission reductions on organic aerosol in the southeastern United States [J].
Blanchard, C. L. ;
Hidy, G. M. ;
Shaw, S. ;
Baumann, K. ;
Edgerton, E. S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (01) :215-238
[2]  
Budisulistiorini S. H., 2015, ATMOS CHEM PHYS, V15, P8871
[3]   Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor [J].
Budisulistiorini, Sri Hapsari ;
Canagaratna, Manjula R. ;
Croteau, Philip L. ;
Marth, Wendy J. ;
Baumann, Karsten ;
Edgerton, Eric S. ;
Shaw, Stephanie L. ;
Knipping, Eladio M. ;
Worsnop, Douglas R. ;
Jayne, John T. ;
Gold, Avram ;
Surratt, Jason D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) :5686-5694
[4]   A review of Secondary Organic Aerosol (SOA) formation from isoprene [J].
Carlton, A. G. ;
Wiedinmyer, C. ;
Kroll, J. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) :4987-5005
[5]   Model Representation of Secondary Organic Aerosol in CMAQv4.7 [J].
Carlton, Annmarie G. ;
Bhave, Prakash V. ;
Napelenok, Sergey L. ;
Edney, Edward D. ;
Sarwar, Golam ;
Pinder, Robert W. ;
Pouliot, George A. ;
Houyoux, Marc .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (22) :8553-8560
[6]   To What Extent Can Biogenic SOA be Controlled? [J].
Carlton, Annmarie G. ;
Pinder, Robert W. ;
Bhave, Prakash V. ;
Pouliot, George A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (09) :3376-3380
[7]   Formation of secondary organic aerosols through photooxidation of isoprene [J].
Claeys, M ;
Graham, B ;
Vas, G ;
Wang, W ;
Vermeylen, R ;
Pashynska, V ;
Cafmeyer, J ;
Guyon, P ;
Andreae, MO ;
Artaxo, P ;
Maenhaut, W .
SCIENCE, 2004, 303 (5661) :1173-1176
[8]   Organic Aerosols in the Earth's Atmosphere [J].
De Gouw, Joost ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (20) :7614-7618
[9]   Kinetics and Products of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols [J].
Eddingsaas, Nathan C. ;
VanderVelde, David G. ;
Wennberg, Paul O. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (31) :8106-8113
[10]   Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies [J].
Ervens, B. ;
Turpin, B. J. ;
Weber, R. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (21) :11069-11102