Developing a Qualification and Verification Strategy for Digital Tissue Image Analysis in Toxicological Pathology

被引:10
|
作者
Zuraw, Aleksandra [1 ]
Staup, Michael [2 ]
Klopfleisch, Robert [3 ]
Aeffner, Famke [4 ]
Brown, Danielle [2 ]
Westerling-Bui, Thomas [5 ]
Rudmann, Daniel [6 ]
机构
[1] Charles River Labs, Pathol Dept, 15 Wormans Mill Court,Suite 1, Frederick, MD 21701 USA
[2] Charles River Labs, Pathol Dept, Durham, NC USA
[3] Freie Univ, Inst Vet Pathol, Berlin, Germany
[4] Amgen Inc, Amgen Res, Translat Safety & Bioanalyt Sci, South San Francisco, CA USA
[5] Aiforia Inc, Cambridge, MA USA
[6] Charles River Labs, Pathol Dept, Ashland, OH USA
关键词
quality control; image analysis; whole slide images; artificial intelligence; digital pathology; histopathology;
D O I
10.1177/0192623320980310
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Digital tissue image analysis is a computational method for analyzing whole-slide images and extracting large, complex, and quantitative data sets. However, as with any analysis method, the quality of generated results is dependent on a well-designed quality control system for the entire digital pathology workflow. Such system requires clear procedural controls, appropriate user training, and involvement of specialists to oversee key steps of the workflow. The toxicologic pathologist is responsible for reporting data obtained by digital image analysis and therefore needs to ensure that it is correct. To accomplish that, they must understand the main parameters of the quality control system and should play an integral part in its conception and implementation. This manuscript describes the most common digital tissue image analysis end points and potential sources of analysis errors. In addition, it outlines recommended approaches for ensuring quality and correctness of results for both classical and machine-learning based image analysis solutions, as adapted from a recently proposed Food and Drug Administration regulatory framework for modifications to artificial intelligence/machine learning-based software as a medical device. These approaches are beneficial for any type of toxicopathologic study which uses the described end points and can be adjusted based on the intended use of the image analysis solution.
引用
收藏
页码:773 / 783
页数:11
相关论文
共 41 条
  • [41] Thyroid hormone receptor alpha (TRa) tissue expression in ductal invasive breast cancer: A study combining quantitative immunohistochemistry with digital slide image analysis
    Charalampoudis, P.
    Agrogiannis, G.
    Kontzoglou, K.
    Kouraklis, G.
    Sotiropoulos, G. C.
    EJSO, 2017, 43 (08): : 1428 - 1432