Parameters identification and adaptive projective synchronization of chaotic systems with unknown parameters

被引:0
作者
Hu Man-feng [1 ]
Xu Zhen-yuan [1 ]
机构
[1] So Yangtze Univ, Sch Sci, Wuxi 214122, Peoples R China
来源
Proceedings of 2006 Chinese Control and Decision Conference | 2006年
关键词
adaptive control; parameters identification; projective synchronization; Qi system;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Projective synchronization, characterized by a scaling factor that two coupled systems synchronize proportionally, is usually observable in a class of nonlinear dynamical systems with partial -1 i nearity. Based on active control idea and Lyapunov stabilization theory, nonlinear controller for a complete nonlinear chaotic system is designed to achieve a full-state projective synchronization. When parameters are unknown, an adaptive controller with parameters identification for the complete nonlinear chaotic is also proposed. Simulation results verify the effectiveness of the proposed scheme.
引用
收藏
页码:62 / +
页数:4
相关论文
共 13 条
[1]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[2]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[3]  
Chen Guanrong, 1997, Control Theory & Applications, V14, P1
[4]  
FANG JQ, 1996, PROGR PHYSICS, V16, P137
[5]  
FANG JQ, 1996, PROGR PHYSICS, V16, P1
[6]   Adaptive control for anti-synchronization of Chua's chaotic system [J].
Hu, J ;
Chen, SH ;
Chen, L .
PHYSICS LETTERS A, 2005, 339 (06) :455-460
[7]  
HU MF, 2005, 2 INT IMP DYN APPL C, P571
[8]   Parameters identification and adaptive synchronization of chaotic systems with unknown parameters [J].
Huang, LL ;
Wang, M ;
Feng, RP .
PHYSICS LETTERS A, 2005, 342 (04) :299-304
[9]   Synchronization and anti-synchronization of Colpitts oscillators using active control [J].
Li, GH .
CHAOS SOLITONS & FRACTALS, 2005, 26 (01) :87-93
[10]  
Perora L.M., 1990, PHYS REV LETT, V64, P821