Supermodular covering knapsack polytope

被引:6
作者
Atamtuerk, Alper [1 ]
Bhardwaj, Avinash [1 ]
机构
[1] Univ Calif Berkeley, Ind Engn & Operat Res, Berkeley, CA 94720 USA
关键词
Conic integer programming; Supermodularity; Lifting; Probabilistic covering knapsack; constraints; Branch-and-cut algorithms; PROGRAMMING APPROACH; VALID INEQUALITIES; FACETS; OPTIMIZATION; CONSTRAINTS; ALGORITHMS;
D O I
10.1016/j.disopt.2015.07.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The supermodular covering knapsack set is the discrete upper level set of a non-decreasing supermodular function. Submodular and supermodular knapsack sets arise naturally when modeling utilities, risk and probabilistic constraints on discrete variables. In a recent paper Atamturk and Narayanan (2009) study the lower level set of a non-decreasing submodular function. In this complementary paper we describe pack inequalities for the supermodular covering knapsack set and investigate their separation, extensions and lifting. We give sequence-independent upper bounds and lower bounds on the lifting coefficients. Furthermore, we present a computational study on using the polyhedral results derived for solving 0-1 optimization problems over conic quadratic constraints with a branch-and-cut algorithm. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 39 条
[1]   CAPACITATED FACILITY LOCATION - VALID INEQUALITIES AND FACETS [J].
AARDAL, K ;
POCHET, Y ;
WOLSEY, LA .
MATHEMATICS OF OPERATIONS RESEARCH, 1995, 20 (03) :562-582
[2]   Maximizing a class of submodular utility functions [J].
Ahmed, Shabbir ;
Atamtuerk, Alper .
MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) :149-169
[3]  
Andersen Kent, 2013, Integer Programming and Combinatorial Optimization. 16th International Conference, IPCO 2013. Proceedings, P37, DOI 10.1007/978-3-642-36694-9_4
[4]  
[Anonymous], 1990, Knapsack Problems: Algorithms and ComputerImplementations
[5]  
[Anonymous], 2003, COMBINATORIAL OPTIMI
[6]   Lifting for conic mixed-integer programming [J].
Atamtuerk, Alper ;
Narayanan, Vishnu .
MATHEMATICAL PROGRAMMING, 2011, 126 (02) :351-363
[7]   The submodular knapsack polytope [J].
Atamtuerk, Alper ;
Narayanan, Vishnu .
DISCRETE OPTIMIZATION, 2009, 6 (04) :333-344
[8]   Conic mixed-integer rounding cuts [J].
Atamtuerk, Alper ;
Narayanan, Vishnu .
MATHEMATICAL PROGRAMMING, 2010, 122 (01) :1-20
[9]   Cover and pack inequalities for (Mixed) integer programming [J].
Atamtürk, A .
ANNALS OF OPERATIONS RESEARCH, 2005, 139 (01) :21-38
[10]   On the facets of the mixed-integer knapsack polyhedron [J].
Atamtürk, A .
MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) :145-175