Bio-orthogonal Immobilization of Fibroblast Growth Factor 2 for Spatial Controlled Cell Proliferation

被引:29
|
作者
Luehmann, Tessa [1 ]
Jones, Gabriel [1 ]
Gutmann, Marcus [1 ]
Rybak, Jens-Christoph [1 ]
Nickel, Joachim [2 ,3 ]
Rubini, Marina [4 ]
Meinel, Lorenz [1 ]
机构
[1] Univ Wurzburg, Inst Pharm & Food Chem, D-97074 Wurzburg, Germany
[2] Univ Wurzburg, Chair Tissue Engn & Regenerat Med, D-97070 Wurzburg, Germany
[3] Branch Fraunhofer Inst Interfacial Engn & Biotech, Translat Ctr Regenerat Therapies Oncol & Musculos, Wurzburg, Germany
[4] Univ Konstanz, Inst Organ Chem, Constance, Germany
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2015年 / 1卷 / 09期
关键词
fibroblast growth factor 2 (FGF-2); bio-orthogonal immobilization; genetic codon expansion; decoration; proliferation; FACTOR DELIVERY; TISSUE-REPAIR; PROTEINS; MATRICES; RECEPTOR;
D O I
10.1021/acsbiomaterials.5b00236
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Presentation of therapeutic proteins on material surfaces is challenged by random immobilization chemistries through lysine or cysteine residues, typically leading to heterogeneous product outcome. Pharmaceutical quality standards warrant a controlled process ideally through site specific conjugation. Therefore, we deployed genetic codon expansion to engineer a propargyl-L-lysine (Plk)-modified FGF-2 analogue, enabling site-specific copper(I)-catalyzed azide alkyne cycloaddition (CuAAC). Site-specific decoration of Plk-FGF-2 to particles sparked cell proliferation of human osteosarcoma cells in a spatially controlled manner around the decorated carrier, rendering this approach instrumental for the future design of quality-improved bioinstructive scaffold outcome.
引用
收藏
页码:740 / 746
页数:7
相关论文
共 50 条
  • [1] Multifunctional coatings for bio-orthogonal immobilization strategies
    Lahann, Joerg
    Deng, Xiaopei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [2] Bio-Orthogonal Chemistry in Cell Engineering
    Wang, Yixin
    Hu, Quanyin
    ADVANCED NANOBIOMED RESEARCH, 2023, 3 (03):
  • [3] Chemoselective Immobilization of Proteins by Microcontact Printing and Bio-orthogonal Click Reactions
    Tolstyka, Zachary P.
    Richardson, Wade
    Bat, Erhan
    Stevens, Caitlin J.
    Parra, Dayanara P.
    Dozier, Jonathan K.
    Distefano, Mark D.
    Dunn, Bruce
    Maynard, Heather D.
    CHEMBIOCHEM, 2013, 14 (18) : 2464 - 2471
  • [4] Chemo-/bio-orthogonal immobilization of biomolecules onto solid surface
    Sun, Xue-Long
    Yang, Liuchun
    Chaikof, Elliot L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [5] Bio-orthogonal and combinatorial approaches for the design of binding growth factors
    Ito, Yoshihiro
    Tada, Seiichi
    BIOMATERIALS, 2013, 34 (31) : 7565 - 7574
  • [6] Bio-orthogonal and combinatorial approaches for the design of binding growth factors
    Ito, Y.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 77 - 77
  • [7] Hydrogen as a Bio-Orthogonal Trigger for Spatiotemporally Controlled Caged Prodrug Activation
    Herzog, Antoine F.
    Schneider, Elia M.
    Stark, Wendelin J.
    HELVETICA CHIMICA ACTA, 2018, 101 (11)
  • [8] Effects of fibroblast growth factor-2 on cell proliferation of cementoblasts
    Yu, Hui-Chieh
    Huang, Fu-Mei
    Lee, Shiuan-Shinn
    Yu, Cheng-Chia
    Chang, Yu-Chao
    JOURNAL OF DENTAL SCIENCES, 2016, 11 (04) : 463 - 467
  • [9] Cell-specific bio-orthogonal metbolic labeling of RNA
    Spitale, Robert
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [10] Controlled in-cell activation of RNA therapeutics using bond-cleaving bio-orthogonal chemistry
    Khan, Irfan
    Seebald, Leah M.
    Robertson, Neil M.
    Yigit, Mehmet V.
    Royzen, Maksim
    CHEMICAL SCIENCE, 2017, 8 (08) : 5705 - 5712