Variational Integrators in Linear Optimal Filtering

被引:0
作者
Flasskamp, Kathrin [1 ]
Murphey, Todd D. [1 ]
机构
[1] Northwestern Univ, McCormick Sch Engn & Appl Sci, Neurosci & Robot Lab, 2145 Sheridan Rd, Evanston, IL 60208 USA
来源
2015 AMERICAN CONTROL CONFERENCE (ACC) | 2015年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Discrete-time estimation and control techniques play a crucial role in digital control architectures. These methods rely on accurate approximations of continuous-time system behavior. For mechanical systems, this includes not only the system state, but also mechanical properties such as symplecticity or the long-term energy behavior. Additionally, we aim to preserve the Hamiltonian structure of optimally controlled or filtered systems. In this contribution, it is discussed how these requirements can be met when replacing the standard discretization schemes by variational integrators. We show that if one chooses a symplectic discretization scheme for a Kalman filtering problem, the discretization inherits the Hamiltonian structure of the continuous-time linear quadratic problem. Numerical experiments with this filter show better results than obtained with standard discretization.
引用
收藏
页码:5140 / 5145
页数:6
相关论文
共 15 条
[1]   Stochastic variational integrators [J].
Bou-Rabee, Nawaf ;
Owhadi, Houman .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) :421-443
[2]   Control strategies on stable manifolds for energy-efficient swing-ups of double pendula [J].
Flasskampa, Kathrin ;
Timmermann, Julia ;
Ober-Bloebaum, Sina ;
Traechtler, Ansgar .
INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (09) :1886-1905
[3]   Variational filtering [J].
Friston, K. J. .
NEUROIMAGE, 2008, 41 (03) :747-766
[4]  
Hager WW, 2000, NUMER MATH, V87, P247, DOI 10.1007/S002110000178
[5]  
Hairer E., 2006, GeometricNumericalIntegration: Structure-PreservingAlgorithmsforOrdinaryDifferentialEquations, V2
[6]  
Johnson E., 2014, IEEE T AUTOMATION SC
[7]  
Kalman R. E., 1960, A new approach to linear filtering and prediction problems, P35, DOI 10.1115/1.3662552
[8]  
Kalman R. E., 1961, J BASIC ENG
[9]  
Lewis F. L., 2008, OPTIMAL ROBUST ESTIM
[10]  
Marsden JE, 2001, ACT NUMERIC, V10, P357, DOI 10.1017/S096249290100006X