Characterizing convective heat transfer coefficients in membrane distillation cassettes

被引:26
作者
Leitch, Megan E. [1 ]
Lowry, Gregory V. [1 ]
Mauter, Meagan S. [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Civil & Environm Engn Dept, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Engn & Publ Policy Dept, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Membrane distillation; Convective heat transfer; Membrane permeability; Kinetic theory of gases; Nusselt Number; MASS-TRANSFER; TEMPERATURE POLARIZATION; CONTACT; PERFORMANCE; TRANSPORT; CFD; DESALINATION; SIMULATION; CHANNELS; MODEL;
D O I
10.1016/j.memsci.2017.05.028
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Accurate characterization of conducive heat transfer in membrane distillation (MD) is essential for determining membrane permeability, calculating thermal efficiency, and describing the effects of process parameters on permeate flux. This work demonstrates the effect of convective heat transfer on common MD performance metrics, reviews existing methods to model and measure convective heat transfer in MD cassettes, and proposes a novel experimental method to validate and or correct estimated convective heat transfer coefficients. This simple method compares trends in experimental permeability to those of theoretical permeability over a series of driving forces and/or flow conditions. We first validate this method using experimental data collected from two cassettes using a single membrane. After correcting the heat transfer coefficients for each cassette, the permeability of a single membrane is consistent across two different cassettes. We then validate this method for a single cassette using two different membranes, finding that the experimentally determined cassette correction factor is consistent within the cassette. Consistent and accurate reporting of cassette heat transfer coefficients will promote direct comparison of membrane and module performance across different MD systems.
引用
收藏
页码:108 / 121
页数:14
相关论文
共 55 条
[1]   Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code [J].
Al-Sharif, Sharaf ;
Albeirutty, Mohammed ;
Cipollina, Andrea ;
Micale, Giorgio .
DESALINATION, 2013, 311 :103-112
[2]   Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation [J].
Ali, A. ;
Macedonio, F. ;
Drioli, E. ;
Aljlil, S. ;
Alharbi, O. A. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2013, 91 (10) :1966-1977
[3]   Membrane distillation: A comprehensive review [J].
Alkhudhiri, Abdullah ;
Darwish, Naif ;
Hilal, Nidal .
DESALINATION, 2012, 287 :2-18
[4]   An experimentally optimized model for heat and mass transfer in direct contact membrane distillation [J].
Andrjesdottir, Oloef ;
Ong, Chin Lee ;
Nabavi, Majid ;
Paredes, Stephan ;
Khalil, A. S. G. ;
Michel, Bruno ;
Poulikakos, Dimos .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 66 :855-867
[5]  
[Anonymous], 2009, Fundamentals of Momentum, Heat, and Mass Transfer, Revised
[6]   CFD simulation of direct contact membrane distillation modules with rough surface channels [J].
Chang, Hsuan ;
Hsu, Jian-An ;
Chang, Cheng-Liang ;
Ho, Chii-Dong .
CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 :3083-3090
[7]   CFD simulation of a membrane distillation module channel [J].
Cipollina, A. ;
Di Miceli, A. ;
Koschikowski, J. ;
Micale, G. ;
Rizzuti, L. .
DESALINATION AND WATER TREATMENT, 2009, 6 (1-3) :177-183
[8]   Membrane distillation: Recent developments and perspectives [J].
Drioli, Enrico ;
Ali, Aamer ;
Macedonio, Francesca .
DESALINATION, 2015, 356 :56-84
[9]   A general review of the Wilson plot method and its modifications to determine convection coefficients in heat exchange devices [J].
Fernandez-Seara, Jose ;
Uhia, Francisco J. ;
Sieres, Jaime ;
Campo, Antonio .
APPLIED THERMAL ENGINEERING, 2007, 27 (17-18) :2745-2757
[10]   Multiscale Modeling of Membrane Distillation: Some Theoretical Considerations [J].
Field, Robert W. ;
Wu, Ho Yan ;
Wu, Jun Jie .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (26) :8822-8828