On the singularities of hyperplane projections of immersions

被引:14
作者
Szucs, A [1 ]
机构
[1] EOTVOS Lorand Univ, H-1088 Budapest, Hungary
关键词
D O I
10.1112/S0024609300007049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an oriented manifold and its immersion in a euclidean space, we compute the oriented cobordism class of the manifold of Sigma(1r) singular points of the projection of the immersion to a hyperplane. For immersions of non-oriented manifolds, we show that the cobordism class of the domain manifold determines those of all Sigma(1r) singularity manifolds of the hyperplane projection. Finally, we investigate the possible (algebraic) number of cusps (that is, Sigma(1,1) singular points) of generic maps of oriented 4t-manifolds in R(6t-1).
引用
收藏
页码:364 / 374
页数:11
相关论文
共 17 条
[1]   COBORDISM OF IMMERSIONS AND HOMOTOPIC PRODUCTS [J].
BURLET, O .
COMMENTARII MATHEMATICI HELVETICI, 1971, 46 (03) :277-&
[2]  
ECCLES PJ, 1989, J LOND MATH SOC, V39, P335
[3]  
HERBERT RJ, 1981, MEM AM MATH SOC, P250
[4]   SYMMETRY PROPERTIES OF SINGULARITIES OF C-INFINITY-FUNCTIONS [J].
JANICH, K .
MATHEMATISCHE ANNALEN, 1978, 238 (02) :147-156
[5]  
KAMATA M, 1996, KYUSHU J MATH, V50, P275
[6]   Triple points of immersed orientable 4n-manifolds in 6n-space [J].
Li, GS .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 :413-416
[7]  
MORIN B, 1965, CR HEBD ACAD SCI, V260, P5662
[8]   Pontrjagin-Thom-type construction for maps with singularities [J].
Rimanyi, R ;
Szucs, A .
TOPOLOGY, 1998, 37 (06) :1177-1191
[9]  
RIMANYI R, IN PRESS JAPAN J MAT
[10]  
SALAMONSEN H, 1970, P ADV STUD I ALG TOP