Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction

被引:88
作者
Bhattarai, S. [1 ]
Cassarini, C. [1 ,2 ]
Lens, P. N. L. [1 ,2 ]
机构
[1] UNESCO IHE, Inst Water Educ, Delft, Netherlands
[2] Natl Univ Ireland Galway, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
anaerobic oxidation of methane; anerobic methanotrophs; EXTRACELLULAR ELECTRON-TRANSFER; MOSBY MUD VOLCANO; EEL RIVER-BASIN; MARINE-SEDIMENTS; COLD SEEPS; MICROBIAL COMMUNITIES; REDUCING BACTERIA; IN-VITRO; OXIDIZING ARCHAEA; GLOBAL INVENTORY;
D O I
10.1128/MMBR.00074-18
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In marine anaerobic environments, methane is oxidized where sulfate-rich seawater meets biogenic or thermogenic methane. In those niches, a few phylogenetically distinct microbial types, i.e., anaerobic methanotrophs (ANME), are able to grow through anaerobic oxidation of methane (AOM). Due to the relevance of methane in the global carbon cycle, ANME have drawn the attention of a broad scientific community for 4 decades. This review presents and discusses the microbiology and physiology of ANME up to the recent discoveries, revealing novel physiological types of anaerobic methane oxidizers which challenge the view of obligate syntrophy for AOM. An overview of the drivers shaping the distribution of ANME in different marine habitats, from cold seep sediments to hydrothermal vents, is given. Multivariate analyses of the abundance of ANME in various habitats identify a distribution of distinct ANME types driven by the mode of methane transport. Intriguingly, ANME have not yet been cultivated in pure culture, despite intense attempts. Further advances in understanding this microbial process are hampered by insufficient amounts of enriched cultures. This review discusses the advantages, limitations, and potential improvements for ANME laboratory-based cultivation systems.
引用
收藏
页数:31
相关论文
共 221 条
[1]   Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania [J].
Alain, K ;
Holler, T ;
Musat, F ;
Elvert, M ;
Treude, T ;
Krüger, M .
ENVIRONMENTAL MICROBIOLOGY, 2006, 8 (04) :574-590
[2]   COMPLETE OXIDATION OF SOLID-PHASE SULFIDES BY MANGANESE AND BACTERIA IN ANOXIC MARINE-SEDIMENTS [J].
ALLER, RC ;
RUDE, PD .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1988, 52 (03) :751-765
[3]   BIOGEOCHEMISTRY The Ongoing Mystery of Sea-Floor Methane [J].
Alperin, Marc ;
Hoehler, Tori .
SCIENCE, 2010, 329 (5989) :288-289
[4]   ANAEROBIC METHANE OXIDATION BY ARCHAEA/SULFATE-REDUCING BACTERIA AGGREGATES: 2. ISOTOPIC CONSTRAINTS [J].
Alperin, Marc J. ;
Hoehler, Tori M. .
AMERICAN JOURNAL OF SCIENCE, 2009, 309 (10) :958-984
[5]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[6]  
[Anonymous], 2014, J POLIT ECON
[7]   Ocean methane hydrates as a slow tipping point in the global carbon cycle [J].
Archer, David ;
Buffett, Bruce ;
Brovkin, Victor .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (49) :20596-20601
[8]   A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea [J].
Arshad, Arslan ;
Speth, Daan R. ;
de Graaf, Rob M. ;
Op den Camp, Huub J. M. ;
Jetten, Mike S. M. ;
Welte, Cornelia U. .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[9]   Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals [J].
Bar-Or, Itay ;
Elvert, Marcus ;
Ecker, Werner ;
Kushmaro, Ariel ;
Vigderovich, Hanni ;
Zhu, Qingzeng ;
Ben-Dov, Eitan ;
Sivan, Orit .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (21) :12293-12301
[10]   Manganese- and Iron-Dependent Marine Methane Oxidation [J].
Beal, Emily J. ;
House, Christopher H. ;
Orphan, Victoria J. .
SCIENCE, 2009, 325 (5937) :184-187