Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces

被引:31
作者
Wang, Yu-Zhao [1 ]
Li, Huai-Qian [2 ,3 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[3] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Eigenvalue estimate; Bakry-Emery Ricci curvature; Smooth metric measure space; Weighted p-Bochner formula; Weighted p-Laplacian; Weighted p-Reilly formula; EQUATIONS; FORMULA; MANIFOLDS; DIAMETER; THEOREMS; OPERATOR; GAP;
D O I
10.1016/j.difgeo.2015.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New lower bounds of the first nonzero eigenvalue of the weighted p-Laplacian are established on compact smooth metric measure spaces with or without boundaries. Under the assumption of positive lower bound for the m-Bakry Emery Ricci curvature, the Escobar-Lichnerowicz-Reilly type estimates are proved; under the assumption of nonnegative infinity-Bakry Emery Ricci curvature and the m-Bakry-Emery Ricci curvature bounded from below by a non-positive constant, the Li Yau type lower bound estimates are given. The weighted p-Bochner formula and the weighted p-Reilly formula are derived as the key tools for the establishment of the above results. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 42
页数:20
相关论文
共 44 条
[1]   SHARP MODULUS OF CONTINUITY FOR PARABOLIC EQUATIONS ON MANIFOLDS AND LOWER BOUNDS FOR THE FIRST EIGENVALUE [J].
Andrews, Ben ;
Clutterbuck, Julie .
ANALYSIS & PDE, 2013, 6 (05) :1013-1024
[2]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[3]  
[Anonymous], 1994, C P LECT NOTES GEOME
[4]   Some new results on eigenvectors via dimension, diameter, and Ricci curvature [J].
Bakry, D ;
Qian, ZM .
ADVANCES IN MATHEMATICS, 2000, 155 (01) :98-153
[5]  
Bakry D., 1985, SEM PROB 19, V1123, P177
[6]  
Bakry D., 2014, Analysis and geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V348
[7]  
Chavel Isaac, 1984, EIGENVALUES RIEMANNI
[8]   General formula for lower bound of the first eigenvalue on Riemannian manifolds [J].
Chen, M ;
Wang, FY .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (04) :384-394
[9]  
CHEN MF, 1994, SCI CHINA SER A, V37, P1
[10]  
CHOI HI, 1983, J DIFFER GEOM, V18, P559