NURBS with Extraordinary Points: High-degree, Non-uniform, Rational Subdivision Schemes

被引:60
作者
Cashman, Thomas J. [1 ]
Augsdoerfer, Ursula H. [1 ]
Dodgson, Neil A. [1 ]
Sabin, Malcolm A.
机构
[1] Univ Cambridge, Cambridge CB2 1TN, England
来源
ACM TRANSACTIONS ON GRAPHICS | 2009年 / 28卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
B-SPLINE SURFACES;
D O I
10.1145/1531326.1531352
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a subdivision framework that adds extraordinary vertices to NURBS of arbitrarily high degree. The surfaces can represent any odd degree NURBS patch exactly. Our rules handle non-uniform knot vectors, and are not restricted to midpoint knot insertion. In the absence of multiple knots at extraordinary points, the limit surfaces have bounded curvature.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices [J].
Augsdorfer, U. H. ;
Dodgson, N. A. ;
Sabin, M. A. .
COMPUTER GRAPHICS FORUM, 2006, 25 (03) :263-272
[2]  
AUGSDORFER UH, 2009, 13 IMA C MA IN PRESS
[3]   Subdivision scheme tuning around extraordinary vertices [J].
Barthe, L ;
Kobbelt, L .
COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (06) :561-583
[4]   INSERTING NEW KNOTS INTO B-SPLINE CURVES [J].
BOEHM, W .
COMPUTER-AIDED DESIGN, 1980, 12 (04) :199-201
[5]   Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision [J].
Cashman, Thomas J. ;
Dodgson, Neil A. ;
Sabin, Malcolm A. .
COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (04) :472-479
[6]   RECURSIVELY GENERATED B-SPLINE SURFACES ON ARBITRARY TOPOLOGICAL MESHES [J].
CATMULL, E ;
CLARK, J .
COMPUTER-AIDED DESIGN, 1978, 10 (06) :350-355
[7]   DISCRETE B-SPLINES AND SUBDIVISION TECHNIQUES IN COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER-GRAPHICS [J].
COHEN, E ;
LYCHE, T ;
RIESENFELD, R .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 14 (02) :87-111
[8]  
DeRose T., 1998, Computer Graphics (SIGGRAPH 98 Proceedings), P85
[9]  
Farin G., 2001, MORGAN KAUFMANN SERI, V5th
[10]  
GALIL Z, 1991, COMPUT SURV, V23, P319, DOI 10.1145/116873.116878