Smoothing effects of dispersive pseudodifferential equations

被引:36
作者
Chihara, H [1 ]
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
10.1081/PDE-120016133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss smoothing effects of dispersive-type pseudodifferential equations whose principal part is not necessarily elliptic. For equations with constant coefficients, a restriction theorem and a smoothing estimate of the resolvent of the principal part obtain smoothing estimates of solutions in weighted Lebesgue spaces. Moreover, we discuss well-posedness of the initial value problem and an alternative approach to the smoothing effects of general dispersive equations with variable coefficients via pseudodifferential calculus.. Our results are the natural generalization of smoothing effects of Schrodinger-type equations.
引用
收藏
页码:1953 / 2005
页数:53
相关论文
共 32 条
[1]  
[Anonymous], PSEUDODIFFERENTIAL O
[2]   GLOBAL ESTIMATES FOR THE SCHRODINGER-EQUATION [J].
BENARTZI, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 107 (02) :362-368
[3]   DECAY AND REGULARITY FOR THE SCHRODINGER-EQUATION [J].
BENARTZI, M ;
KLAINERMAN, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :25-37
[4]   LOCAL SMOOTHING AND CONVERGENCE PROPERTIES OF SCHRODINGER TYPE EQUATIONS [J].
BENARTZI, M ;
DEVINATZ, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (02) :231-254
[6]   LOCAL SMOOTHING PROPERTIES OF SCHRODINGER-EQUATIONS [J].
CONSTANTIN, P ;
SAUT, JC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :791-810
[7]  
Constantin P., 1988, J AM MATH SOC, V1, P413
[8]  
Doi S, 1996, COMMUN PART DIFF EQ, V21, P163
[9]   Smoothing effects of Schrodinger evolution groups on Riemannian manifolds [J].
Doi, SI .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (03) :679-706
[10]  
Hormander L., 1983, Fundamental Principles of Mathematical Sciences, V257