A minimum dimensional class of simple games

被引:10
作者
Freixas, Josep [1 ,2 ]
Marciniak, Dorota [3 ,4 ]
机构
[1] Tech Univ Catalonia, Dept Appl Math 3, Manresa 08242, Spain
[2] Tech Univ Catalonia, High Engn Sch Manresa, Manresa 08242, Spain
[3] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[4] Inst Natl Telecommun, PL-104894 Warsaw, Poland
关键词
Simple games; Hypergraphs; Boolean algebra; Dimension; Codimension; AMENDING FORMULA; POWER;
D O I
10.1007/s11750-009-0115-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper provides several extensions of the notion of dimension of a simple game and proves the existence of a minimum subclass of weighted games with the property that every simple game can be expressed as their intersection. Some further generalizations lead to the new concept of codimension which is obtained by considering the union instead of the intersection as the basic operation.
引用
收藏
页码:407 / 414
页数:8
相关论文
共 12 条
[1]  
ALGABA E, 2001, QUESTIIO, V25, P71
[2]   POWER AND SIZE - NEW PARADOX [J].
BRAMS, SJ ;
AFFUSO, PJ .
THEORY AND DECISION, 1976, 7 (1-2) :29-56
[3]   A power analysis of linear games with consensus [J].
Carreras, F ;
Freixas, J .
MATHEMATICAL SOCIAL SCIENCES, 2004, 48 (02) :207-221
[4]   On the dimension of simple monotonic games [J].
Deineko, VG ;
Woeginger, GJ .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (01) :315-318
[5]  
Freixas J, 2004, EUR J OPER RES, V156, P415, DOI [10.1016/S0377-2217(03)00903-7, 10.1016/s0377-2217(02)00903-7]
[6]   A note about games-composition dimension [J].
Freixas, J ;
Puente, MA .
DISCRETE APPLIED MATHEMATICS, 2001, 113 (2-3) :265-273
[7]   Dimension of complete simple games with minimum [J].
Freixas, Josep ;
Puente, Maria Albina .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 188 (02) :555-568
[8]   THE CANADIAN CONSTITUTIONAL AMENDING FORMULA - BARGAINING IN THE PAST AND THE FUTURE [J].
KILGOUR, DM ;
LEVESQUE, TJ .
PUBLIC CHOICE, 1984, 44 (03) :457-480
[9]  
KILGOUR DM, 1983, CAN J POLIT SCI, V16, P771
[10]  
PELEG B., 1992, RATIONAL INTERACTION, P45