Estimation of Harvest Time of Forage Sorghum (Sorghum Bicolor) CV. Samurai-2 Using Decision Tree Algorithm

被引:2
作者
Suradiradja, K. H. [1 ]
Sitanggang, I. S. [1 ]
Abdullah, L. [2 ]
Hermadi, I [1 ]
机构
[1] IPB Univ, Dept Comp Sci, Fac Math & Nat Sci, Jalan Agatis,Kampus IPB Darmaga, Bogor 16680, Indonesia
[2] IPB Univ, Dept Nutr & Feed Technol, Fac Anim Sci, Jalan Agatis,Kampus IPB Darmaga, Bogor 16680, Indonesia
关键词
decision tree; estimated harvest; forage sorghum; machine learning; sorghum bicolor; CLASSIFICATION;
D O I
10.5398/tasj.2022.45.4.436
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Efforts to improve feed quality by adding additional nutritional supplements can increase production costs due to the increased concentrate prices. Therefore, one option is to combine the main feed with forages containing a high protein source at a low cost, such as Gramineae (e.g., sorghum). This study aims to estimate the harvest time of sorghum when the biomass content, nutrients, and digestibility for livestock are in good condition using a machine learning algorithm, namely a decision tree. The stages of this study include the collection of observation data in the field, preprocessing, modeling, evaluation, and validation. Images and field observations are the primary datasets used. These datasets become the model input for the decision tree algorithm. The results of this study are the classification model for estimating harvest time with an accuracy of 98.86% and the rule that is generated by the decision tree model, the right time to be harvested are in the condition (Day After Planting > 77.5 days AND Day After Planting <= 84 days AND Diameter > 26 mm) or (Day After Planting > 84 days AND Height <= 138.5 cm AND Leaves > 8.5 pieces) or (Day After Planting > 84 days AND Height > 138.5 cm). In conclusion, the rule generated from the decision tree algorithm can help estimate the fast harvest time of sorghum bicolor cv. Samurai 2.
引用
收藏
页码:436 / 442
页数:7
相关论文
共 17 条
[1]  
Abdullah L.Suharlina., 2010, Media Peteternakan, V33, P44, DOI [DOI 10.5398/MEDPET.2010.33.3.169, 10.5398/medpet.2010.33.3.169]
[2]  
[Anonymous], 2005, Discovering Knowledge in Data: An Introduction to Data Mining
[3]   Silage Quality of Sorghum Harvested at Different Times and Its Combination with Mixed Legumes or Concentrate Evaluated in Vitro [J].
Ardiansyah ;
Wiryawan, K. G. ;
Karti, P. D. M. H. .
MEDIA PETERNAKAN, 2016, 39 (01) :53-60
[4]  
Etuk E.B., 2012, J ANIM SCI ADV, V2, P510
[5]   A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting [J].
Ghosal, Sambuddha ;
Zheng, Bangyou ;
Chapman, Scott C. ;
Potgieter, Andries B. ;
Jordan, David R. ;
Wang, Xuemin ;
Singh, Asheesh K. ;
Singh, Arti ;
Hirafuji, Masayuki ;
Ninomiya, Seishi ;
Ganapathysubramanian, Baskar ;
Sarkar, Soumik ;
Guo, Wei .
PLANT PHENOMICS, 2019, 2019
[6]  
Gorunescu F, 2011, INTEL SYST REF LIBR, P1, DOI 10.1007/978-3-642-19721-5
[7]  
Han J, 2012, MOR KAUF D, P1
[8]   Machine Learning in Agriculture: A Review [J].
Liakos, Konstantinos G. ;
Busato, Patrizia ;
Moshou, Dimitrios ;
Pearson, Simon ;
Bochtis, Dionysis .
SENSORS, 2018, 18 (08)
[9]   Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance [J].
Lyons, Sarah E. ;
Ketterings, Quirine M. ;
Godwin, Gregory S. ;
Cherney, Debbie J. ;
Cherney, Jerome H. ;
Van Amburgh, Michael E. ;
Meisinger, John J. ;
Kilcer, Tom F. .
JOURNAL OF DAIRY SCIENCE, 2019, 102 (08) :7134-7149
[10]   PREDICTION OF SORGHUM BIOMASS USING UAV TIME SERIES DATA AND RECURRENT NEURAL NETWORKS [J].
Masjedi, Ali ;
Carpenter, Neal R. ;
Crawford, Melba M. ;
Tuinstra, Mitch R. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :2695-2702