Progressive refinement for support vector machines

被引:5
|
作者
Wagstaff, Kiri L. [1 ]
Kocurek, Michael [2 ]
Mazzoni, Dominic [1 ]
Tang, Benyang [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Support vector machines; Efficiency; Reclassification; MISR;
D O I
10.1007/s10618-009-0149-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector machines (SVMs) have good accuracy and generalization properties, but they tend to be slow to classify new examples. In contrast to previous work that aims to reduce the time required to fully classify all examples, we present a method that provides the best-possible classification given a specific amount of computational time. We construct two SVMs: a "full" SVM that is optimized for high accuracy, and an approximation SVM (via reduced-set or subset methods) that provides extremely fast, but less accurate, classifications. We apply the approximate SVM to the full data set, estimate the posterior probability that each classification is correct, and then use the full SVM to reclassify items in order of their likelihood of misclassification. Our experimental results show that this method rapidly achieves high accuracy, by selectively devoting resources (reclassification) only where needed. It also provides the first such progressive SVM solution that can be applied to multiclass problems.
引用
收藏
页码:53 / 69
页数:17
相关论文
共 50 条
  • [1] Progressive refinement for support vector machines
    Kiri L. Wagstaff
    Michael Kocurek
    Dominic Mazzoni
    Benyang Tang
    Data Mining and Knowledge Discovery, 2010, 20 : 53 - 69
  • [2] Support vector machines
    Mammone, Alessia
    Turchi, Marco
    Cristianini, Nello
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (03) : 283 - 289
  • [3] Support vector machines
    Guenther, Nick
    Schonlau, Matthias
    STATA JOURNAL, 2016, 16 (04) : 917 - 937
  • [4] Support vector machines with applications
    Moguerza, Javier M.
    Munoz, Alberto
    STATISTICAL SCIENCE, 2006, 21 (03) : 322 - 336
  • [5] Selective support vector machines
    Seref, Onur
    Kundakcioglu, O. Erhun
    Prokopyev, Oleg A.
    Pardalos, Panos M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (01) : 3 - 20
  • [6] Sparseness of support vector machines
    Steinwart, I
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (06) : 1071 - 1105
  • [7] Faster Support Vector Machines
    Schlag S.
    Schmitt M.
    Schulz C.
    ACM Journal of Experimental Algorithmics, 2021, 26
  • [8] Binarized Support Vector Machines
    Carrizosa, Emilio
    Martin-Barragan, Belen
    Morales, Dolores Romero
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (01) : 154 - 167
  • [9] Support Vector Machines in R
    Karatzoglou, A
    Meyer, D
    Hornik, K
    JOURNAL OF STATISTICAL SOFTWARE, 2006, 15 (09):
  • [10] On coresets for support vector machines
    Tukan, Murad
    Baykal, Cenk
    Feldman, Dan
    Rus, Daniela
    THEORETICAL COMPUTER SCIENCE, 2021, 890 (890) : 171 - 191