SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS

被引:81
作者
Liu, Wenjun [1 ]
Zhuang, Hefeng [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2017年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
Convex functions; Hermite-Hadamard inequality; Holder integral inequality; Quantum estimate; INTEGRAL-INEQUALITIES; QUASI-CONVEXITY; (ALPHA;
D O I
10.11948/2017031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, based on a new quantum integral identity, we establish some quantum estimates of Hermite-Hadamard type inequalities for convex functions. These results generalize and improve some known results given in literatures.
引用
收藏
页码:501 / 522
页数:22
相关论文
共 33 条
[1]   NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX [J].
Alomari, M. ;
Darus, M. ;
Dragomir, S. S. .
TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (04) :353-359
[2]  
Bai SP, 2016, J APPL ANAL COMPUT, V6, P171
[3]   Color Image Analysis by Quaternion-Type Moments [J].
Chen, Beijing ;
Shu, Huazhong ;
Coatrieux, Gouenou ;
Chen, Gang ;
Sun, Xingming ;
Coatrieux, Jean Louis .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (01) :124-144
[4]  
Dragomir S. S., 2000, RGMIA Monographs
[5]  
Dragomir SS., 2002, Tamkang J. Math, V33, P45, DOI [10.5556/j.tkjm.33.2002.304, DOI 10.5556/J.TKJM.33.2002.304]
[6]   Incremental Support Vector Learning for Ordinal Regression [J].
Gu, Bin ;
Sheng, Victor S. ;
Tay, Keng Yeow ;
Romano, Walter ;
Li, Shuo .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (07) :1403-1416
[7]  
Guo XY, 2016, J COMPUT ANAL APPL, V21, P144
[8]   MORE RESULTS ON HERMITE-HADAMARD TYPE INEQUALITY THROUGH (α, m)-PREINVEXITY [J].
Hussain, Sabir ;
Qaisar, Shahid .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (02) :293-305
[9]  
Ion DA, 2007, ANN UNIV CRAIOVA-MAT, V34, P83
[10]  
Kac V. G., 2002, Quantum Calculus, V113