SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS

被引:79
作者
Liu, Wenjun [1 ]
Zhuang, Hefeng [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2017年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
Convex functions; Hermite-Hadamard inequality; Holder integral inequality; Quantum estimate; INTEGRAL-INEQUALITIES; QUASI-CONVEXITY; (ALPHA;
D O I
10.11948/2017031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, based on a new quantum integral identity, we establish some quantum estimates of Hermite-Hadamard type inequalities for convex functions. These results generalize and improve some known results given in literatures.
引用
收藏
页码:501 / 522
页数:22
相关论文
共 33 条
  • [1] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX
    Alomari, M.
    Darus, M.
    Dragomir, S. S.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (04): : 353 - 359
  • [2] Bai SP, 2016, J APPL ANAL COMPUT, V6, P171
  • [3] Color Image Analysis by Quaternion-Type Moments
    Chen, Beijing
    Shu, Huazhong
    Coatrieux, Gouenou
    Chen, Gang
    Sun, Xingming
    Coatrieux, Jean Louis
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (01) : 124 - 144
  • [4] Dragomir S. S., 2000, RGMIA Monographs
  • [5] Dragomir SS., 2002, Tamkang J. Math, V33, P45, DOI [10.5556/j.tkjm.33.2002.304, DOI 10.5556/J.TKJM.33.2002.304]
  • [6] Incremental Support Vector Learning for Ordinal Regression
    Gu, Bin
    Sheng, Victor S.
    Tay, Keng Yeow
    Romano, Walter
    Li, Shuo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (07) : 1403 - 1416
  • [7] Guo XY, 2016, J COMPUT ANAL APPL, V21, P144
  • [8] MORE RESULTS ON HERMITE-HADAMARD TYPE INEQUALITY THROUGH (α, m)-PREINVEXITY
    Hussain, Sabir
    Qaisar, Shahid
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (02): : 293 - 305
  • [9] Ion DA, 2007, ANN UNIV CRAIOVA-MAT, V34, P83
  • [10] Kac V. G., 2002, Quantum Calculus, V113