MAHALANOBIS DISTANCE AND ITS APPLICATION FOR DETECTING MULTIVARIATE OUTLIERS

被引:146
作者
Ghorbani, Hamid [1 ]
机构
[1] Univ Kashan, Dept Stat, Fac Math Sci, Kashan 8731753153, Iran
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2019年 / 34卷 / 03期
关键词
Mahalanobis distance; multivariate normal distribution; multivariate outliers; outlier detection; IDENTIFICATION;
D O I
10.22190/FUMI1903583G
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
While methods of detecting outliers is frequently implemented by statisticians when analyzing univariate data, identifying outliers in multivariate data pose challenges that univariate data do not. In this paper, after short reviewing some tools for univariate outliers detection, the Mahalanobis distance, as a famous multivariate statistical distances, and its ability to detect multivariate outliers are discussed. As an application the univariate and multivariate outliers of a real data set has been detected using R software environment for statistical computing.
引用
收藏
页码:583 / 595
页数:13
相关论文
共 50 条
[31]   Identification of Multivariate Outliers: A Performance Study [J].
Filzmoser, Peter .
AUSTRIAN JOURNAL OF STATISTICS, 2005, 34 (02) :127-138
[32]   Finding an unknown number of multivariate outliers [J].
Riani, Marco ;
Atkinson, Anthony C. ;
Cerioli, Andrea .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 :447-466
[33]   Generalizing the Mahalanobis distance via density kernels [J].
Martos, Gabriel ;
Munoz, Alberto ;
Gonzalez, Javier .
INTELLIGENT DATA ANALYSIS, 2014, 18 :S19-S31
[34]   Anomaly detection for IGBTs using Mahalanobis distance [J].
Patil, Nishad ;
Das, Diganta ;
Pecht, Michael .
MICROELECTRONICS RELIABILITY, 2015, 55 (07) :1054-1059
[35]   Mahalanobis Distance based Adaptive Unscented Kalman Filter and Its Application in GPS/MEMS-IMU Integration [J].
Pei, Yifei ;
Gao, Shesheng ;
Hu, Gaoge ;
Zhao, Yan ;
Jia, Ke .
PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, :2649-2655
[36]   The application of rough set and Mahalanobis distance to enhance the quality of OSA diagnosis [J].
Wang, Pa-Chun ;
Su, Chao-Ton ;
Chen, Kun-Huang ;
Chen, Ning-Hung .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (06) :7828-7836
[37]   Information Loss of the Mahalanobis Distance in High Dimensions: Application to Feature Selection [J].
Ververidis, Dimitrios ;
Kotropoulos, Constantine, Sr. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (12) :2275-2281
[38]   Bounds for the largest Mahalanobis distance [J].
Gath, Eugene G. ;
Hayes, Kevin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) :93-106
[39]   A Mahalanobis distance fuzzy classifier [J].
Deer, PJ ;
Eklund, PW ;
Norman, BD .
ANZIIS 96 - 1996 AUSTRALIAN NEW ZEALAND CONFERENCE ON INTELLIGENT INFORMATION SYSTEMS, PROCEEDINGS, 1996, :220-223
[40]   On Mahalanobis Distance in Functional Settings [J].
Berrendero, Jose R. ;
Bueno-Larraz, Beatriz ;
Cuevas, Antonio .
JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21