Lanczos tridiagonalization and core problems

被引:11
作者
Hnetynkova, Iveta [1 ]
Strakos, Zdenek [1 ]
机构
[1] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207 8, Czech Republic
关键词
linear approximation problem; orthogonal transformation; core problem; Golub-Kahan bidiagonalization; Lanczos tridiagonalization; Jacobi matrix;
D O I
10.1016/j.laa.2006.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lanczos tridiagonalization orthogonally transforms a real symmetric rnatrix A to symmetric tridiagonal form. The Golub-Kahan bidiagonalization orthogonally reduces a nonsyminetric rectangular matrix to upper or lower bidiagonal form. Both algorithms are very closely related. The paper [C.C. Paige, Z. Strakog, Core problems in linear algebraic systems, SIAM J. Matrix Anal. Appl, 27 (2006) 861-875] presents a new formulation of orthogonally invariant linear approximation problems A(x) approximate to b. It is proved that the partial upper bidiagonalization of the extended matrix [b, A] determines a core approximation problem A (11) x (1) approximate to b(1), with all necessary and Sufficient information for solving the original problem given by b(1) and A(11). It is further shown how the core problem call be used in a simple and efficient way for solving different formulations of the original approximation problem. Our contribution relates the core problem formulation to the Lanczos tridiagonalization and derives its characteristics from the relationship between the Golub-Kahan bidiagonalization, the Lanczos tridiagonalization and the well-known properties of Jacobi matrices. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 13 条
[1]  
BJORCK A, 1994, BIT, V34, P510, DOI 10.1007/BF01934265
[2]  
BJORCK A, 1988, BIT, V28, P659, DOI 10.1007/BF01941141
[3]   Estimation of the L-curve via Lanczos bidiagonalization [J].
Calvetti, D ;
Golub, GH ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 1999, 39 (04) :603-619
[4]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[5]  
Golub GH, 1965, SIAM J NUMER ANAL, V2, P205, DOI DOI 10.1137/0702016
[6]   AN ITERATION METHOD FOR THE SOLUTION OF THE EIGENVALUE PROBLEM OF LINEAR DIFFERENTIAL AND INTEGRAL OPERATORS [J].
LANCZOS, C .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 45 (04) :255-282
[7]  
Lanczos C., 1996, LINEAR DIFFERENTIAL
[8]   LSQR - AN ALGORITHM FOR SPARSE LINEAR-EQUATIONS AND SPARSE LEAST-SQUARES [J].
PAIGE, CC ;
SAUNDERS, MA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (01) :43-71
[9]   Core problems in linear algebraic systems [J].
Paige, CC ;
Strakos, Z .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (03) :861-875
[10]  
Paige CC, 2002, TOTAL LEAST SQUARES AND ERRORS-IN-VARIABLES MODELING, P25