On the Eigenvalues of Some Signed Graphs

被引:0
作者
Souri, M. [1 ]
Heydari, F. [1 ]
Maghasedi, M. [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Karaj Branch, Karaj, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2021年 / 45卷 / 02期
关键词
Signed graph; Eigenvalues; Complete multipartite graphs; Seidel matrix; S-determined;
D O I
10.1007/s40995-021-01059-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let G be a simple graph and A(G) be the adjacency matrix of G. The matrix S(G) = J - I 2A(G) is called the Seidel matrix of G, where I is an identity matrix and J is a square matrix all of whose entries are equal to 1. Clearly, if G is a graph of order n with no isolated vertex, then the Seidel matrix of G is also the adjacency matrix of a signed complete graph Kn whose negative edges induce G. In this paper, we study the Seidel eigenvalues of the complete multipartite graph K-n1;...; nk and investigate its Seidel characteristic polynomial. We show that if there are at least three parts of size n(i), for some i = 1;...; k, then K-n1;...; (nk) is determined, up to switching, by its Seidel spectrum.
引用
收藏
页码:635 / 639
页数:5
相关论文
共 8 条
[1]   On the eigenvalues of signed complete graphs [J].
Akbari, S. ;
Dalvandi, S. ;
Heydari, F. ;
Maghasedi, M. .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (03) :433-441
[2]  
Akbari S, 2020, UTILITAS MATH B
[3]   Spectral characterizations of signed lollipop graphs [J].
Belardo, Francesco ;
Petecki, Pawel .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 480 :144-167
[4]   Complete multipartite graphs that are determined, up to switching, by their Seidel spectrum [J].
Berman, Abraham ;
Shaked-Monderer, Naomi ;
Singh, Ranveer ;
Zhang, Xiao-Dong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 564 :58-71
[5]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[6]   Eigenvalues of complete multipartite graphs [J].
Delorme, C. .
DISCRETE MATHEMATICS, 2012, 312 (17) :2532-2535
[7]   On the seidel integral complete multipartite graphs [J].
Lv, Sheng-mei ;
Wei, Liang ;
Zhao, Hai-xing .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (04) :705-710
[8]   Seidel Integral Complete r-Partite Graphs [J].
Wang, Ligong ;
Zhao, Guopeng ;
Li, Ke .
GRAPHS AND COMBINATORICS, 2014, 30 (02) :479-493