Investigation of the Physiology of the Obligate Alkaliphilic Bacillus marmarensis GMBE 72T Considering Its Alkaline Adaptation Mechanism for Poly(3-hydroxybutyrate) Synthesis

被引:5
作者
Atakav, Yagmur [1 ,2 ]
Pinar, Orkun [1 ]
Kazan, Dilek [1 ]
机构
[1] Marmara Univ, Dept Bioengn, Fac Engn, TR-34722 Kadikoy, Turkey
[2] Adana Alparslan Turkes Sci & Technol Univ, Dept Bioengn, Fac Engn, TR-01250 Saricam Adana, Turkey
关键词
Bacillus marmarensis; polyhydroxybutyrate (PHB); lactose; alkaline adaptation; POLYHYDROXYALKANOATES; OPTIMIZATION; MEGATERIUM; IMPROVE; PROTEIN; OIL;
D O I
10.3390/microorganisms9020462
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The novel extreme obligate alkaliphilic Bacillus marmarensis DSM 21297 is known to produce polyhydroxybutyrate (PHB). However, the detailed mechanism of PHB synthesis in B. marmarensis is still unknown. Here, we investigated which metabolic pathways and metabolic enzymes are responsible for PHB synthesis in order to understand the regulatory pathway and optimize PHB synthesis in B. marmarensis. In accordance with the fact that beta-galactosidase, 3-hydroxyacyl-CoA dehydrogenase, and Enoyl-CoA hydratase together with acyl-CoA dehydrogenase and lipase were annotated in B. marmarensis according to the RAST server, we used glucose, lactose, and olive oil to understand the preferred metabolic pathway for the PHB synthesis. It was found that B. marmarensis produces PHB from glucose, lactose, and olive oil. However, the highest PHB titer and the highest amount of PHB synthesized per dry cell mass (Y-P/X) were achieved in the presence of lactose, as compared to glucose and olive oil. Additionally, in the absence of peptone, the amount of PHB synthesized is reduced for each carbon source. Interestingly, none of the carbon sources studied yielded an efficient PHB synthesis, and supplementation of the medium with potassium ions did not enhance PHB synthesis. According to these experimental results and the presence of annotated metabolic enzymes based on the RAST server, PHB accumulation in the cells of B. marmarensis could be improved by the level of the expression of 3-hydroxybutyryl-CoA dehydrogenase (1.1.1.157), which increases the production of NADPH. Additionally, the accumulation of 3-hydroxyacyl-CoA could enhance the production of PHB in B. marmarensis in the presence of fatty acids. To our knowledge, this is the first report investigating the regulatory system involved in the control of PHB metabolism of B. marmarensis.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 38 条
[1]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[2]   Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system [J].
Bachem, S ;
Stülke, J .
JOURNAL OF BACTERIOLOGY, 1998, 180 (20) :5319-5326
[3]   Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process [J].
Berwig, Karina Hammel ;
Baldasso, Camila ;
Dettmer, Aline .
BIORESOURCE TECHNOLOGY, 2016, 218 :31-37
[4]   Polyhydroxybutyrate Accumulation in Bacillus megaterium and Optimization of Process Parameters Using Response Surface Methodology [J].
Bora, Limpon .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2013, 21 (02) :415-420
[5]   Galactose Metabolism Plays a Crucial Role in Biofilm Formation by Bacillus subtilis [J].
Chai, Yunrong ;
Beauregard, Pascale B. ;
Vlamakis, Hera ;
Losick, Richard ;
Kolter, Roberto .
MBIO, 2012, 3 (04)
[6]   Medical applications of biopolyesters polyhydroxyalkanoates [J].
Chen, Guo-qiang ;
Wang, Yang .
CHINESE JOURNAL OF POLYMER SCIENCE, 2013, 31 (05) :719-736
[7]   Bacillus marmarensis sp nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost [J].
Denizci, Aziz Akin ;
Kazan, Dilek ;
Erarslan, Altan .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2010, 60 :1590-1594
[8]   Poly(3-Hydroxybutyrate) Degradation in Ralstonia eutropha H16 Is Mediated Stereoselectively to (S)-3-Hydroxybutyryl Coenzyme A (CoA) via Crotonyl-CoA [J].
Eggers, Jessica ;
Steinbuechel, Alexander .
JOURNAL OF BACTERIOLOGY, 2013, 195 (14) :3213-3223
[9]  
Eggink G., 1993, Industrial Crops and Products, V1, P157, DOI DOI 10.1016/0926-6690(92)90014-M
[10]   Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review [J].
Favaro, Lorenzo ;
Basaglia, Marina ;
Casella, Sergio .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (01) :208-227