Very weak solutions of subquadratic parabolic systems with non-standard p(x,t)-growth

被引:8
作者
Li, Qifan [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Math, 122 Luoshi Rd, Wuhan 430070, Hubei, Peoples R China
关键词
Parabolic p-Laplacian; Non-standard growth condition; Higher integrability; HIGHER INTEGRABILITY; EQUATIONS;
D O I
10.1016/j.na.2017.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to establish a higher integrability result for very weak solutions of certain parabolic systems whose model is the parabolic p(x,t)-Laplacian system. Under assumptions on the exponent function p : Omega(T) = Omega x (0,T) -> (2n/n+2, 2], it is shown that any very weak solution u : Omega(T) -> R-N with vertical bar Du vertical bar(p(.)(1-epsilon)) is an element of L-1(Omega(T)) belongs to the natural energy spaces, i.e. vertical bar Du vertical bar(P(.)) is an element of L-loc(1) (Omega(T)), provided epsilon > 0 is small enough. This extends the main result of Bogelein and Li (2014) to the subquadratic case. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 41
页数:25
相关论文
共 16 条
[1]   Regularity results for parabolic systems related to a class of non-Newtonian fluids [J].
Acerbi, E ;
Mingione, G ;
Seregin, GA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :25-60
[2]  
[Anonymous], 2007, THESIS U ERLANGEN NU
[3]  
[Anonymous], 2007, Proc. A. Razmadze Math. Inst.
[4]   Calderon-Zygmund estimates for parabolic p(x, t)-Laplacian systems [J].
Baroni, Paolo ;
Boegelein, Verena .
REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (04) :1355-1386
[5]  
Bögelein V, 2008, ANN ACAD SCI FENN-M, V33, P387
[6]   The regularity of general parabolic systems with degenerate diffusion [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 221 (1041) :1-143
[7]   Very weak solutions of degenerate parabolic systems with non-standard p(x,t)-growth [J].
Boegelein, Verena ;
Li, Qifan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 98 :190-225
[8]  
Bögelein V, 2011, PUBL MAT, V55, P201
[9]  
Bögelein V, 2009, ADV DIFFERENTIAL EQU, V14, P121
[10]  
Da Prato G., 1965, Ann. Mat. Pura Appl., V69, P383, DOI 10.1007/BF02414378