Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses

被引:41
|
作者
Xu, Yan-Xia [1 ]
Mao, Juan [1 ]
Chen, Wei [1 ]
Qian, Ting-Ting [1 ]
Liu, Sheng-Chuan [1 ]
Hao, Wan-Jun [1 ]
Li, Chun-Fang [1 ]
Chen, Liang [1 ]
机构
[1] Chinese Acad Agr Sci, Tea Res Inst, Natl Ctr Tea Improvement, Key Lab Tea Biol & Resources Utilizat,Minist Agr, 9 South Meiling Rd, Hangzhou 310008, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ARF genes family; Camellia sinensis; Expression; Phytohormone; Stress; Transcriptional regulator; GENOME-WIDE IDENTIFICATION; FACTOR GENE FAMILY; TRANSCRIPTION FACTOR; ROOT ELONGATION; CELL-DIVISION; ARABIDOPSIS; INITIATION; OVEREXPRESSION; HOMEOSTASIS; AUX/IAA;
D O I
10.1016/j.plaphy.2015.11.014
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Auxin response factor (ARF) proteins are a multigene family of regulators involved in various physiological and developmental processes in plants. However, their modes of action in the tea plant (Camellia sinensis) remain largely unknown. In this study, we identified 15 members of the tea ARF gene family, using the public information about C. sinensis, both in our laboratory, as well as in other laboratories, and analyzed their phylogenetic relationships, conserved domains and the compositions of the amino acids in the middle region. A comprehensive expression analysis in different tissues and organs revealed that many ARF genes were expressed in a tissue-specific manner, suggesting they have different functions in the growth and development processes of the tea plant. The expression analysis under three forms of auxin (indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, naphthylacetic acid) treatment showed that the majority of the ARF genes were down-regulated in the shoots and up-regulated in the roots, suggesting opposite action mechanisms of the ARF genes in the shoots and roots. The expression levels of most ARF genes were changed under various phytohormone and abiotic stresses, indicating the ARF gene family plays important roles in various phytohormone and abiotic stress signals and may mediate the crosstalk between phytohormones and abiotic stresses. The current study provides basic information for the ARF genes of the tea plant and will pave the way for deciphering the precise role of ARFs in tea developmental processes and breeding stress-tolerant tea varieties. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 50 条
  • [41] Identification of genes revealed differential expression profiles and lignin accumulation during leaf and stem development in tea plant (Camellia sinensis (L.) O. Kuntze)
    Wang, Yong-Xin
    Teng, Rui-Min
    Wang, Wen-Li
    Wang, Ying
    Shen, Wei
    Zhuang, Jing
    PROTOPLASMA, 2019, 256 (02) : 359 - 370
  • [42] Integrative Transcriptome and Proteome Analysis Reveals the Absorption and Metabolism of Selenium in Tea Plants [Camellia sinensis (L.) O. Kuntze]
    Ren, Hengze
    Li, Xiaoman
    Guo, Lina
    Wang, Lu
    Hao, Xinyuan
    Zeng, Jianming
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [43] Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze)
    Kamunya, S. M.
    Wachira, F. N.
    Pathak, R. S.
    Korir, R.
    Sharma, V.
    Kumar, R.
    Bhardwaj, P.
    Chalo, R.
    Ahuja, P. S.
    Sharma, R. K.
    TREE GENETICS & GENOMES, 2010, 6 (06) : 915 - 929
  • [44] Effects of exogenous calcium on the drought response of the tea plant (Camellia sinensis (L.) Kuntze)
    Malyukova, Lyudmila S.
    Koninskaya, Natalia G.
    Orlov, Yuriy L.
    Samarina, Lidiia S.
    PEERJ, 2022, 10
  • [45] An Improved Protocol for the Isolation of RNA from Roots of Tea (Camellia sinensis (L.) O. Kuntze)
    Muoki, Richard Chalo
    Paul, Asosii
    Kumari, Anita
    Singh, Kashmir
    Kumar, Sanjay
    MOLECULAR BIOTECHNOLOGY, 2012, 52 (01) : 82 - 88
  • [46] Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]
    Singh, Kashmir
    Kumar, Sanjay
    Yadav, Sudesh Kumar
    Ahuja, Paramvir Singh
    PLANT BIOTECHNOLOGY REPORTS, 2009, 3 (01) : 95 - 101
  • [47] Diversity Analysis of Diazotrophic Bacteria Associated with the Roots of Tea (Camellia sinensis (L.) O. Kuntze)
    Arvind, Gulati
    Sood, Swati
    Rahi, Praveen
    Thakur, Rishu
    Chauhan, Sunita
    Chadha, Isha Chawla Nee
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 21 (06) : 545 - 555
  • [48] Agrobacterium tumefaciens-mediated genetic transformation in tea (Camellia sinensis [L.] O. Kuntze)
    Lopez S.J.
    Kumar R.R.
    Pius P.K.
    Muraleedharan N.
    Plant Molecular Biology Reporter, 2004, 22 (2) : 201 - 202
  • [49] Efficient vegetation indices for phenotyping of abiotic stress tolerance in tea plant ( Camellia sinensis (L.) Kuntze)
    Samarina, Lidiia
    Malyukova, Lyudmila
    Koninskaya, Natalia
    Malyarovskaya, Valentina
    Ryndin, Alexey
    Tong, Wei
    Xia, Enhua
    Khlestkina, Elena
    HELIYON, 2024, 10 (15)
  • [50] Molecular evidence for maternal inheritance of the chloroplast genome in tea, Camellia sinensis (L.) O. Kuntze
    Kaundun, Shiv Shankhar
    Matsumoto, Satoru
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2011, 91 (14) : 2660 - 2663