Nonisothermal fluctuating hydrodynamics and Brownian motion

被引:15
作者
Falasco, G. [1 ,2 ]
Kroy, K. [1 ]
机构
[1] Univ Leipzig, Inst Theoret Phys, Postfach 100 920, D-04009 Leipzig, Germany
[2] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
关键词
INSTANTANEOUS VELOCITY; STATISTICAL-MECHANICS; STATIONARY STATES; STEADY-STATE; FLUID; THERMOPHORESIS; DIFFUSION; MEMORY;
D O I
10.1103/PhysRevE.93.032150
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental conditions.
引用
收藏
页数:10
相关论文
共 52 条
[31]  
Landau LD, 1987, FLUID MECH, V6
[32]   Measurement of the Instantaneous Velocity of a Brownian Particle [J].
Li, Tongcang ;
Kheifets, Simon ;
Medellin, David ;
Raizen, Mark G. .
SCIENCE, 2010, 328 (5986) :1673-1675
[33]   MODE-COUPLING THEORY OF HYDRODYNAMICS AND STEADY-STATE SYSTEMS [J].
MACHTA, J ;
OPPENHEIM, I .
PHYSICA A, 1982, 112 (03) :361-392
[34]   Diffusion in nonuniform temperature and its geometric analog [J].
Polettini, Matteo .
PHYSICAL REVIEW E, 2013, 87 (03)
[35]   STATISTICAL-MECHANICS OF STATIONARY STATES .1. FORMAL THEORY [J].
PROCACCIA, I ;
RONIS, D ;
COLLINS, MA ;
ROSS, J ;
OPPENHEIM, I .
PHYSICAL REVIEW A, 1979, 19 (03) :1290-1306
[36]   Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging [J].
Qian, Bian ;
Montiel, Daniel ;
Bregulla, Andreas ;
Cichos, Frank ;
Yang, Haw .
CHEMICAL SCIENCE, 2013, 4 (04) :1420-1429
[37]   Hot Brownian Motion [J].
Rings, Daniel ;
Schachoff, Romy ;
Selmke, Markus ;
Cichos, Frank ;
Kroy, Klaus .
PHYSICAL REVIEW LETTERS, 2010, 105 (09)
[38]   SIMPLIFIED HYDRODYNAMIC THEORY OF NONLOCAL STATIONARY STATE FLUCTUATIONS [J].
RONIS, D ;
PUTTERMAN, S .
PHYSICAL REVIEW A, 1980, 22 (02) :773-777
[39]   STATISTICAL-MECHANICS OF STATIONARY STATES .6. HYDRODYNAMIC FLUCTUATION THEORY FAR FROM EQUILIBRIUM [J].
RONIS, D ;
PROCACCIA, I ;
MACHTA, J .
PHYSICAL REVIEW A, 1980, 22 (02) :714-724
[40]   FLUCTUATIONS IN NONEQUILIBRIUM FLUIDS [J].
SCHMITZ, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 171 (01) :1-58