Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development

被引:31
作者
Grzywa, Tomasz M. [1 ,2 ,3 ]
Justyniarska, Magdalena [1 ]
Nowis, Dominika [3 ]
Golab, Jakub [1 ]
机构
[1] Med Univ Warsaw, Dept Immunol, PL-02097 Warsaw, Poland
[2] Med Univ Warsaw, Doctoral Sch, PL-02091 Warsaw, Poland
[3] Med Univ Warsaw, Expt Med Lab, PL-02097 Warsaw, Poland
关键词
immune evasion; erythroid progenitor cells; CD71+erythroid cells; erythropoiesis; anemia; Ter-cells; ineffective erythropoiesis; REGULATORY T-CELLS; BONE-MARROW; STEM-CELL; SUPPRESSOR-CELLS; MYELOID CELLS; HUMAN-ERYTHROPOIETIN; NEGATIVE REGULATION; GROWTH-FACTORS; UP-REGULATION; PLASMA-CELLS;
D O I
10.3390/cancers13040870
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Tumor immune evasion is one of the hallmarks of tumor progression that enables tumor growth despite the activity of the host immune system. It is mediated by various types of cells. Recently, immature red blood cells called erythroid progenitor cells (EPCs) were identified as regulators of the immune response in cancer. EPCs expand in cancer as a result of dysregulated erythropoiesis and potently suppress the immune response. Thus, targeting dysregulated EPC differentiation appears to be a promising therapeutic strategy. Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor beta (TGF-beta), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 307 条
[21]  
BOUCHNITA A, 2016, BLOOD, V91, P371, DOI DOI 10.1002/AJH.24291
[22]  
BR M, 2004, MOL CELL PROTEOMICS, V11, P73, DOI DOI 10.1038/NSMB713
[23]  
BROWN RAM, 2020, BLOOD, V10, P476, DOI DOI 10.3389/FONC.2020.00476
[24]  
BRUNS I, 2012, EXP HEMATOL, V120, P2620, DOI DOI 10.1182/BLOOD-2011-04-347484
[25]   Tumor necrosis factor α inhibits erythroid differentiation in human erythropoietin-dependent cells involving p38 MAPK pathway, GATA-1 and FOG-1 downregulation and GATA-2 upregulation [J].
Buck, Isabelle ;
Morceau, Franck ;
Cristofanon, Silvia ;
Heintz, Caroline ;
Chateauvieux, Sebastien ;
Reuter, Simone ;
Dicato, Mario ;
Diederich, Marc .
BIOCHEMICAL PHARMACOLOGY, 2008, 76 (10) :1229-1239
[26]   Iron control of erythroid development by a novel aconitase-associated regulatory pathway [J].
Bullock, Grant C. ;
Delehanty, Lorrie L. ;
Talbot, Anne-Laure ;
Gonias, Sara L. ;
Tong, Wing-Hang ;
Rouault, Tracey A. ;
Dewar, Brian ;
Macdonald, Jeffrey M. ;
Chruma, Jason J. ;
Goldfarb, Adam N. .
BLOOD, 2010, 116 (01) :97-108
[27]  
BURDA P, 2010, BLOOD, V24, P1249, DOI DOI 10.1038/LEU.2010.104
[28]   Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments [J].
Busse, Dorothea ;
de la Rosa, Maurus ;
Hobiger, Kirstin ;
Thurley, Kevin ;
Flossdorf, Michael ;
Scheffold, Alexander ;
Hoefer, Thomas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (07) :3058-3063
[29]   A Phase 3 Trial of Luspatercept in Patients with Transfusion-Dependent β-Thalassemia [J].
Cappellini, M. D. ;
Viprakasit, V. ;
Taher, A. T. ;
Georgiev, P. ;
Kuo, K. H. M. ;
Coates, T. ;
Voskaridou, E. ;
Liew, H. -K. ;
Pazgal-Kobrowski, I. ;
Forni, G. L. ;
Perrotta, S. ;
Khelif, A. ;
Lal, A. ;
Kattamis, A. ;
Vlachaki, E. ;
Origa, R. ;
Aydinok, Y. ;
Bejaoui, M. ;
Ho, P. J. ;
Chew, L. -P. ;
Bee, P. -C. ;
Lim, S. -M. ;
Lu, M. -Y. ;
Tantiworawit, A. ;
Ganeva, P. ;
Gercheva, L. ;
Shah, F. ;
Neufeld, E. J. ;
Thompson, A. ;
Laadem, A. ;
Shetty, J. K. ;
Zou, J. ;
Zhang, J. ;
Miteva, D. ;
Zinger, T. ;
Linde, P. G. ;
Sherman, M. L. ;
Hermine, O. ;
Porter, J. ;
Piga, A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (13) :1219-1231
[30]  
CAPPELLINI MD, 2019, NEW ENGL J MED, V104, P477, DOI DOI 10.3324/HAEMATOL.2018.198887