A posteriori error estimates of stabilized finite volume method for the Stokes equations

被引:4
作者
Zhang, Tong [1 ,3 ]
Mu, Lin [2 ]
Yuan, JinYun [3 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
[2] Michigan State Univ, Dept Math, E Lansing, MI 48823 USA
[3] Univ Fed Parana, Dept Matemat, Ctr Politecn, BR-81531990 Curitiba, Parana, Brazil
关键词
a posteriori error estimates; stabilized finite volume method; Stokes equations; dual argument; ELEMENT-METHOD; APPROXIMATIONS;
D O I
10.1002/mma.3457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the residual-type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H-1 norm and pressure in L-2 norm are derived. Furthermore, a global upper bound of u - u(h) in L-2-norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 50 条
[31]   A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES [J].
Allendes, Alejandro ;
Otarola, Enrique ;
Salgado, Abner J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03) :A1860-A1884
[32]   A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations [J].
Ohlberger, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (02) :355-387
[33]   A posteriori error estimates for finite volume method based on bilinear trial functions for the elliptic equation [J].
Lin, Tao ;
Ye, Xiu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 254 :185-191
[34]   A posteriori error estimates of mixed DG finite element methods for linear parabolic equations [J].
Hou, Tianliang .
APPLICABLE ANALYSIS, 2013, 92 (08) :1655-1665
[35]   Residual a posteriori error estimates for the mixed finite element method [J].
Kirby, R .
COMPUTATIONAL GEOSCIENCES, 2003, 7 (03) :197-214
[36]   A posteriori error estimates of finite element method for parabolic problems [J].
Chen, YP .
ACTA MATHEMATICA SCIENTIA, 1999, 19 (04) :449-456
[37]   A posteriori error estimates for the mortar mixed finite element method [J].
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) :1021-1042
[38]   Residual a Posteriori Error Estimates for the Mixed Finite Element Method [J].
Robert Kirby .
Computational Geosciences, 2003, 7 :197-214
[39]   A posteriori error estimates for the exponential midpoint method for linear and semilinear parabolic equations [J].
Hu, Xianfa ;
Wang, Wansheng ;
Mao, Mengli ;
Cao, Jiliang .
NUMERICAL ALGORITHMS, 2024,
[40]   On the semi-discrete stabilized finite volume method for the transient Navier–Stokes equations [J].
Jian Li ;
Zhangxin Chen .
Advances in Computational Mathematics, 2013, 38 :281-320