A posteriori error estimates of stabilized finite volume method for the Stokes equations

被引:4
作者
Zhang, Tong [1 ,3 ]
Mu, Lin [2 ]
Yuan, JinYun [3 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
[2] Michigan State Univ, Dept Math, E Lansing, MI 48823 USA
[3] Univ Fed Parana, Dept Matemat, Ctr Politecn, BR-81531990 Curitiba, Parana, Brazil
关键词
a posteriori error estimates; stabilized finite volume method; Stokes equations; dual argument; ELEMENT-METHOD; APPROXIMATIONS;
D O I
10.1002/mma.3457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the residual-type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H-1 norm and pressure in L-2 norm are derived. Furthermore, a global upper bound of u - u(h) in L-2-norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 50 条
  • [21] Error estimates of finite volume method for Stokes optimal control problem
    Lan, Lin
    Chen, Ri-hui
    Wang, Xiao-dong
    Ma, Chen-xia
    Fu, Hao-nan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [22] A stabilized finite volume method for the stationary Navier-Stokes equations
    Sheng, Ying
    Zhang, Tie
    Jiang, Zhong-Zhong
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 363 - 372
  • [23] A STABILIZED EQUAL-ORDER FINITE VOLUME METHOD FOR THE STOKES EQUATIONS
    Tian, Wanfu
    Song, Liqiu
    Li, Yonghai
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (06) : 615 - 628
  • [24] A posteriori error analysis of nonconforming finite-element discretization for the Stokes equations
    Bahaj, Mohamed
    Rachid, Anas
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (07) : 1497 - 1508
  • [25] A POSTERIORI ERROR ESTIMATES OF FINITE VOLUME ELEMENT METHOD FOR SECOND-ORDER QUASILINEAR ELLIPTIC PROBLEMS
    Bi, Chunjia
    Wang, Cheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (01) : 22 - 40
  • [26] A Posteriori Error Estimates for Exponential Midpoint Integrator Finite Element Method for Parabolic Equations
    Hu, Xianfa
    Wang, Wansheng
    Fang, Yonglei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5849 - 5862
  • [27] A posteriori error estimates of finite element method for the time-dependent Oseen equations
    Zhang, Tong
    Zhao, Jing
    APPLICABLE ANALYSIS, 2016, 95 (05) : 1144 - 1163
  • [28] Error estimates for two-level penalty finite volume method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Feng, Xinlong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) : 1918 - 1928
  • [29] A posteriori error estimates for the Stokes problem with singular sources
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 : 1007 - 1032
  • [30] On the semi-discrete stabilized finite volume method for the transient Navier-Stokes equations
    Li, Jian
    Chen, Zhangxin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (02) : 281 - 320