Infinitely many solutions for indefinite quasilinear Schrodinger equations under broken symmetry situations

被引:5
作者
Zhang, Liang [1 ]
Tang, Xianhua [2 ]
Chen, Yi [3 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
[3] China Univ Min & Technol, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Bolle's perturbation method; broken symmetry; dual approach; indefinite quasilinear Schrodinger equation; SEMILINEAR ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS; SOLITON-SOLUTIONS; RADIAL SOLUTIONS; CRITICAL-POINTS; EXISTENCE;
D O I
10.1002/mma.4030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of infinitely many solutions for the indefinite quasilinear Schrodinger equations {-Delta u - Delta(vertical bar u vertical bar(alpha))vertical bar u vertical bar(alpha-2)u = g(x,u) + h(x,u), x epsilon Omega, u = 0, x epsilon partial derivative Omega, where alpha >= 2, g, h epsilon C((Omega) over bar x R, R). When g(x, u) is only of locally superlinear growth at infinity in u and h(x, u) is not odd in u, the existence of infinitely many solutions is proved in spite of the lack of the symmetry of this problem by using dual approach and Bolle's perturbation method. Our results generalize some known results and are new even in the symmetric situation. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:979 / 991
页数:13
相关论文
共 27 条
[1]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[2]  
[Anonymous], 1986, CBMS REG C SER MATH
[3]  
Bartolo R., 2013, DISCRETE CONTIN DY S, P51
[4]  
Bartolo R, 2013, ADV NONLINEAR STUD, V13, P739
[5]   On the Bolza problem [J].
Bolle, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) :274-288
[6]   The multiplicity of solutions in non-homogeneous boundary value problems [J].
Bolle, P ;
Ghoussoub, N ;
Tehrani, H .
MANUSCRIPTA MATHEMATICA, 2000, 101 (03) :325-350
[7]  
Candela AM, 2006, TOPOL METHOD NONL AN, V27, P117
[8]   Multiple solutions for a quasilinear Schrodinger equation [J].
Fang, Xiang-Dong ;
Szulkin, Andrzej .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :2015-2032
[9]   LARGE-AMPLITUDE QUASI-SOLITONS IN SUPERFLUID FILMS [J].
KURIHARA, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (10) :3262-3267
[10]   EVOLUTION THEOREM FOR A CLASS OF PERTURBED ENVELOPE SOLITON-SOLUTIONS [J].
LAEDKE, EW ;
SPATSCHEK, KH ;
STENFLO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2764-2769