On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping

被引:52
作者
Linares, F.
Pazoto, A. F.
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Math Inst, BR-21945970 Rio De Janeiro, Brazil
关键词
exponential decay; stabilization; Korteweg-de Vries equation;
D O I
10.1090/S0002-9939-07-08810-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the asymptotic behavior of solutions of the critical generalized Korteweg-de Vries equation in a bounded interval with a localized damping term. Combining multiplier techniques and compactness arguments it is shown that the problem of exponential decay of the energy is reduced to prove the unique continuation property of weak solutions. A locally uniform stabilization result is derived.
引用
收藏
页码:1515 / 1522
页数:8
相关论文
共 18 条
[1]  
BONA JL, 2003, COMMUN PART DIFF EQ, P1391
[2]  
Colin T., 2001, ADV DIFFERENTIAL EQU, V6, P1463
[3]  
Coron JM, 2004, J EUR MATH SOC, V6, P367
[4]  
FAMINSKII AV, 2001, FUNCTIONAL DIFFERENT, V8, P183
[5]  
HOLMER J, INITIAL BOUNDARY VAL
[6]  
Kato T., 1983, ADV MATH S, V8, P93
[7]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620
[8]  
Lions JL., 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[9]  
Menzala GP, 2002, Q APPL MATH, V60, P111
[10]   Existence of blow-up solutions in the energy space for the critical generalized KdV equation [J].
Merle, F .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (03) :555-578