Subnormality and composition operators on the Bergman space

被引:6
作者
Richman, AE [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47905 USA
关键词
47B33; 47B32; 47B20;
D O I
10.1007/BF02789595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following the work of C. Cowen and T. Kriete on the Hardy space, we prove that under a regularity condition, all composition operators with a subnormal adjoint on A(2)(D) have linear fractional symbols of the form phi(z) = ((r+s)z+(1-s)d)/(r(1-s)(d) over barz+(1+sr)) Moreover, we show that all composition operators on the Bergman space having these symbols have a subnormal adjoint, with larger range for the parameter r than found in the Hardy space case.
引用
收藏
页码:105 / 124
页数:20
相关论文
共 24 条
[1]  
BAKER IN, 1979, J LOND MATH SOC, V20, P255
[2]  
Conway J. B., 1991, The theory of subnormal operators
[3]  
COWEN C., 1995, Studies in Advanced Mathematics
[4]   SUBNORMALITY AND COMPOSITION OPERATORS ON H-2 [J].
COWEN, CC ;
KRIETE, TL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 81 (02) :298-319
[5]  
COWEN CC, 1983, J OPERAT THEOR, V9, P77
[6]   TRANSFERRING SUBNORMALITY OF ADJOINT COMPOSITION OPERATORS [J].
COWEN, CC .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (01) :167-171
[9]  
COWEN CC, 1990, COMPOSITION OPERAT 1, P131
[10]  
COWEN CC, 1988, INTEGR EQUAT OPER TH, V11, P167