Multiple Dirichlet series and automorphic forms

被引:0
作者
Chinta, Gautam [1 ]
Friedberg, Solomon [2 ]
Hoffstein, Jeffrey [3 ]
机构
[1] CUNY City Coll, Dept Math, New York, NY 10031 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
来源
MULTIPLE DIRICHLET SERIES, AUTOMORPHIC FORMS, AND ANALYTIC NUMBER THEORY | 2006年 / 75卷
关键词
multiple Dirichlet series; automorphic form; twisted L-function; mean value of L-functions; Gauss sum;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article gives an introduction to the multiple Dirichlet series arising from sums of twisted automorphic L-functions. We begin by explaining how such series arise from Rankin-Selberg constructions. Then more recent work, using Hartogs' continuation principle as extended by Bochner in place of such constructions, is described. Applications to the nonvanishing of L-functions and to other problems are also discussed, and a multiple Dirichlet series over a function field is computed in detail.
引用
收藏
页码:3 / +
页数:5
相关论文
共 58 条
[1]  
[Anonymous], 1990, INTRO COMPLEX ANAL S
[2]   TRACE FORMULA FOR REDUCTIVE GROUPS .1. TERMS ASSOCIATED TO CLASSES IN G(Q) [J].
ARTHUR, JG .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :911-952
[3]   CERTAIN DIRICHLET SERIES ASSOCIATED WITH HILBERT MODULAR FORMS AND RANKINS METHOD [J].
ASAI, T .
MATHEMATISCHE ANNALEN, 1977, 226 (01) :81-94
[4]   Whittaker-Fourier coefficients of metaplectic Eisenstein series [J].
Banks, W ;
Bump, D ;
Lieman, D .
COMPOSITIO MATHEMATICA, 2003, 135 (02) :153-178
[5]   A NONVANISHING RESULT FOR TWISTS OF L-FUNCTIONS OF GL(N) [J].
BARTHEL, L ;
RAMAKRISHNAN, D .
DUKE MATHEMATICAL JOURNAL, 1994, 74 (03) :681-700
[6]  
Brubaker B, 2004, INT MATH RES NOTICES, V2004, P4211
[7]   Cubic twists of GL(2) automorphic L-functions [J].
Brubaker, B ;
Friedberg, S ;
Hoffstein, J .
INVENTIONES MATHEMATICAE, 2005, 160 (01) :31-58
[8]  
BRUBAKER B, IN PRESS CRELLE
[9]  
BRUBAKER B, RESIDUES WEYL GROUP
[10]  
BRUBAKER B, WEYL GROUP MULTIPLE, V3