THREE RED HERRINGS AROUND VAUGHT'S CONJECTURE

被引:12
作者
Baldwin, John T. [1 ]
Koerwien, Sy D. Friedman Martin
Laskowski, Michael C.
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St M-C 249, Chicago, IL 60607 USA
基金
奥地利科学基金会;
关键词
ATOMIC MODELS; CATEGORICITY; CARDINALS;
D O I
10.1090/tran/6572
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a model theoretic proof that if there is a counterexample to Vaught's conjecture there is a counterexample such that every model of cardinality aleph(1) is maximal (strengthening a result of Hjorth's). In the process we analyze three examples of a sentence characterizing aleph(1). We also give a new proof of Harrington's theorem that any counterexample to Vaught's conjecture has models in aleph(1) of arbitrarily high Scott rank below aleph(2).
引用
收藏
页码:3673 / 3694
页数:22
相关论文
共 28 条
[1]  
Ackerman N., 2013, MODEL THEORETI UNPUB
[2]  
[Anonymous], STUDIES LOGIC FDN MA
[3]  
[Anonymous], SCOTT RANKS COUNTERE
[4]  
[Anonymous], STUDIES LOGIC FDN MA
[5]  
Baldwin John T., 2009, U LECT SERIES, V50
[6]  
Baldwin John T., 2007, NOTRE DAME J FORM L, V48, P79, DOI 10.1305/ndjfl/1172787546
[7]  
Becker Howard, 1996, LONDON MATH SOC LECT, V232
[8]  
Chang C. C., 1968, LECT NOTES MATH, V72, P36
[9]   TREE ARGUMENT IN INFINITARY MODEL THEORY [J].
HARNIK, V ;
MAKKAI, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 67 (02) :309-314
[10]   Orbit cardinals:: On the effective cardinalities arising as quotient spaces of the form X/G where G acts on a polish space X [J].
Hjorth, G .
ISRAEL JOURNAL OF MATHEMATICS, 1999, 111 (1) :221-261