Finite-time stabilization for a class of uncertain continuous time systems with time-varying delay

被引:0
作者
Yao, Lusheng [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
来源
PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020) | 2020年
关键词
Uncertain system; Time-varying delay; Finite-time stabilization; Linear matrix inequality; H-INFINITY CONTROL; OUTPUT-FEEDBACK; STABILITY ANALYSIS; NONLINEAR-SYSTEMS; SWITCHED SYSTEMS; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For finite-time stability, it's extremely difficult to design feedback controller based on analysis result which contains double integral in the Lyapunov-Krasovskii-like functional. The conditions obtained by using conventional techniques contain bilinear items and can't be calculated effectively. This paper proposes a general procedure to address this issue by introducing a set of original LMIs to deal with the eigenvalue problem and using projection lemma to decouple decision variables. An example is given to illustrate the effectiveness of the proposed method.
引用
收藏
页码:4562 / 4567
页数:6
相关论文
共 29 条
[1]   Finite-Time Stabilizability, Detectability, and Dynamic Output Feedback Finite-Time Stabilization of Linear Systems [J].
Amato, F. ;
Darouach, M. ;
De Tommasi, G. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (12) :6521-6528
[2]   Input-output finite-time stabilization of impulsive linear systems: Necessary and sufficient conditions [J].
Amato, F. ;
De Tommasi, G. ;
Pironti, A. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2016, 19 :93-106
[3]   Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems [J].
Amato, F. ;
De Tommasi, G. ;
Pironti, A. .
AUTOMATICA, 2013, 49 (08) :2546-2550
[4]  
Amato F., 2014, Finite-Time Stability and Control, VVolume 453
[5]   Finite-Time Stability of Linear Time-Varying Systems: Analysis and Controller Design [J].
Amato, Francesco ;
Ariola, Marco ;
Cosentino, Carlo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (04) :1003-1008
[6]  
Dorato P., 1961, P IRE INT CONV REC P, V4, P83
[7]   A cone complementarity linearization algorithm for static output-feedback and related problems [J].
ElGhaoui, L ;
Oustry, F ;
AitRami, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1171-1176
[8]   A LINEAR MATRIX INEQUALITY APPROACH TO H-INFINITY CONTROL [J].
GAHINET, P ;
APKARIAN, P .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (04) :421-448
[9]   Finite-Time Resilient Controller Design of a Class of Uncertain Nonlinear Systems With Time-Delays Under Asynchronous Switching [J].
He, Shuping ;
Ai, Qilong ;
Ren, Chengcheng ;
Dong, Jun ;
Liu, Fei .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (02) :281-286
[10]   Robust Finite-Time Bounded Controller Design of Time- Delay Conic Nonlinear Systems Using Sliding Mode Control Strategy [J].
He, Shuping ;
Song, Jun ;
Liu, Fei .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (11) :1863-1873