Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review

被引:62
作者
Zhou, Jin-hua [1 ]
Shen, Yong-feng [2 ]
Jia, Nan [1 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Rolling Automat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
reduced activation ferritic; martensitic steel; strengthening mechanism; high-angle grain boundary; subgrain boundary; precipitate; FERRITIC-MARTENSITIC STEELS; TENSILE PROPERTIES; MICROSTRUCTURE STABILITY; IMPACT PROPERTIES; GRAIN-SIZE; RAFM STEEL; CLAM STEEL; THERMOMECHANICAL TREATMENT; RUPTURE BEHAVIOR; CREEP-PROPERTIES;
D O I
10.1007/s12613-020-2121-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic (RAFM) steels. High-angle grain boundaries, subgrain boundaries, nano-sized M23C6, and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength. M23C6 carbides are easily coarsened under high temperatures, thereby weakening their ability to block dislocations. Creep properties are improved through the reduction of M23C6 carbides. Thus, the loss of strength must be compensated by other strengthening mechanisms. This review also outlines the recent progress in the development of RAFM steels. Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength. Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel. The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries. This procedure increases the creep life of TMT(thermo-mechanical treatment) 9Cr-1W-0.06Ta steel by similar to 20 times compared with those of F82H and Eurofer 97 steels under 550 degrees C/260 MPa.
引用
收藏
页码:335 / 348
页数:14
相关论文
共 118 条
  • [71] Creep processes in pure aluminium processed by equal-channel angular pressing
    Sklenicka, V
    Dvorak, J
    Kral, P
    Stonawska, Z
    Svoboda, M
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 410 : 408 - 412
  • [72] A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates
    Sun, L.
    Simm, T. H.
    Martin, T. L.
    McAdam, S.
    Galvin, D. R.
    Perkins, K. M.
    Bagot, P. A. J.
    Moody, M. P.
    Ooi, S. W.
    Hill, P.
    Rawson, M. J.
    Bhadeshia, H. K. D. H.
    [J]. ACTA MATERIALIA, 2018, 149 : 285 - 301
  • [73] Operation of a 3D Frank-Read source in a stress gradient and implications for size-dependent plasticity
    Szajewski, B. A.
    Chakravarthy, S. S.
    Curtin, W. A.
    [J]. ACTA MATERIALIA, 2013, 61 (05) : 1469 - 1477
  • [74] EFFECTS OF GRAIN-SIZE ON CREEP-BEHAVIOR OF TI-50MOL-PERCENT AL INTERMETALLIC COMPOUND AT 1100-K
    TAKAHASHI, T
    NAGAI, H
    OIKAWA, H
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1990, 128 (02): : 195 - 200
  • [75] Solubility product and precipitation of TaC in Fe-8Cr-2W steel
    Tamura, M
    Shinozuka, K
    Masamura, K
    Ishizawa, K
    Sugimoto, S
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1998, 258 : 1158 - 1162
  • [76] Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service
    Tan, L.
    Katoh, Y.
    Tavassoli, A. -A. F.
    Henry, J.
    Rieth, M.
    Sakasegawa, H.
    Tanigawa, H.
    Huang, Q.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2016, 479 : 515 - 523
  • [77] Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors
    Tan, L.
    Snead, L. L.
    Katoh, Y.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2016, 478 : 42 - 49
  • [78] The effect of carbide distributions on long-term creep rupture strength of SUS321H and SUS347H stainless steels
    Tanaka, H
    Murata, M
    Abe, F
    Yagi, K
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 234 : 1049 - 1052
  • [79] Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions
    Taneike, M
    Abe, F
    Sawada, K
    [J]. NATURE, 2003, 424 (6946) : 294 - 296
  • [80] Microstructure and properties of CLAM/316L steel friction stir welded joints
    Tang, Wenshen
    Yang, Xinqi
    Li, Shengli
    Li, Huijun
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 271 : 189 - 201