Learning Stable Dynamical Systems for Visual Servoing

被引:7
作者
Paolillo, Antonio [1 ]
Saveriano, Matteo [2 ]
机构
[1] Dalle Molle Inst Artificial Intelligence IDSIA, USI SUPSI, Lugano, Switzerland
[2] Univ Trento, Dept Ind Engn DII, Trento, Italy
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022 | 2022年
关键词
MANIPULATION; STABILITY; ENSURE;
D O I
10.1109/ICRA46639.2022.9811944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the dual benefit of integrating imitation learning techniques, based on the dynamical systems formalism, with the visual servoing paradigm. On the one hand, dynamical systems allow to program additional skills without explicitly coding them in the visual servoing law, but leveraging few demonstrations of the full desired behavior. On the other, visual servoing allows to consider exteroception into the dynamical system architecture and be able to adapt to unexpected environment changes. The beneficial combination of the two concepts is proven by applying three existing dynamical systems methods to the visual servoing case. Simulations validate and compare the methods; experiments with a robot manipulator show the validity of the approach in a real-world scenario.
引用
收藏
页码:8636 / 8642
页数:7
相关论文
共 41 条
[1]   Visual Servoing in an Optimization Framework for the Whole-Body Control of Humanoid Robots [J].
Agravante, Don Joven ;
Claudio, Giovanni ;
Spindler, Fabien ;
Chaumette, Francois .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02) :608-615
[2]   Predictive Control for Constrained Image-Based Visual Servoing [J].
Allibert, Guillaume ;
Courtial, Estelle ;
Chaumette, Francois .
IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (05) :933-939
[3]   A survey of robot learning from demonstration [J].
Argall, Brenna D. ;
Chernova, Sonia ;
Veloso, Manuela ;
Browning, Brett .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (05) :469-483
[4]  
Billard AG, 2016, SPRINGER HANDBOOK OF ROBOTICS, P1995
[5]   Kinesthetic teaching and attentional supervision of structured tasks in human-robot interaction [J].
Caccavale, Riccardo ;
Saveriano, Matteo ;
Finzi, Alberto ;
Lee, Dongheui .
AUTONOMOUS ROBOTS, 2019, 43 (06) :1291-1307
[6]   A machine learning-based visual servoing approach for fast robot control in industrial setting [J].
Castelli, Francesco ;
Michieletto, Stefano ;
Ghidoni, Stefano ;
Pagello, Enrico .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (06)
[7]   Visual servo control - Part II: Advanced approaches [J].
Chaumette, Francois ;
Hutchinson, Seth .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2007, 14 (01) :109-118
[8]   Viosual servo control - Part I: Basic approaches [J].
Chaumette, Francois ;
Hutchinson, Seth .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (04) :82-90
[9]   Global path-planning for constrained and optimal visual servoing [J].
Chesi, Graziano ;
Hung, Y. S. .
IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (05) :1050-1060
[10]   Active learning with statistical models [J].
Cohn, DA ;
Ghahramani, Z ;
Jordan, MI .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1996, 4 :129-145